题目内容

设函数f(x)=1-x2+ln(x+1)
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若不等式f(x)>
kx
x+1
-x2 (k∈N*)在(0,+∞)上恒成立,求k的最大值.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性
专题:导数的综合应用
分析:(Ⅰ)首先求出f(x)的定义域,函数f(x)的导数,分别令它大于0,小于0,解不等式,必须注意定义域,求交集;
(Ⅱ)化简不等式f(x)>
kx
x+1
-x2,得:(x+1)[1+ln(x+1)]>kx,令g(x)=(x+1))[1+ln(x+1)]-kx,求出g'(x),由x>0,求出2+ln(x+1)>2,讨论k,分k≤2,k>2,由恒成立结合单调性判断k的取值,从而得到k的最大值.
解答: 解:(Ⅰ)函数f(x)的定义域为(-1,+∞),
函数f(x)的导数f'(x)=-2x+
1
x+1

令f'(x)>0则
1
x+1
>2x,
解得
-1-
3
2
<x<
-1+
3
2

令f'(x)<0则
1
x+1
<2x

解得x>
-1+
3
2
或x<
-1-
3
2

∵x>-1,
∴f(x)的单调增区间为(-1,
3
-1
2
),
单调减区间为(
3
-1
2
,+∞);
(Ⅱ)不等式f(x)>
kx
x+1
-x2
 即1-x2+ln(x+1)>
kx
x+1
-x2
,即1+ln(x+1)>
kx
x+1

即(x+1)[1+ln(x+1)]>kx(k∈N*)在(0,+∞)上恒成立,
令g(x)=(x+1))[1+ln(x+1)]-kx,则
g'(x)=2+ln(x+1)-k,
∵x>0,∴2+ln(x+1)>2,
若k≤2,则g'(x)>0,即g(x)在(0,+∞)上递增,
∴g(x)>g(0)即g(x)>1>0,
∴(x+1)[1+ln(x+1)]>kx(k∈N*)在(0,+∞)上恒成立;
若k>2则g(x)不为单调函数.
故k的最大值为2.
点评:本题主要考查运用导数求函数的单调性,求解时应注意函数的定义域,同时考查含参不等式恒成立问题,通常运用参数分离,转化为求函数的最值,但求最值较难,本题转化为大于0的不等式,构造函数g(x),运用导数说明g(x)>0恒成立,从而得到结论.这种思想方法要掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网