题目内容

设函数f(x)=
1
3
ax3+
1
2
bx2+(1-2a)x,a,b∈R,a≠0,
(Ⅰ)若曲线y=f(x)与x轴相切于异于原点的一点,且函数f(x)的极小值为-
4
3
a,求a,b的值;
(Ⅱ)若x0>0,且
a
x0+2
+
b
x0+1
+
1-2a
x0
=0,
    ①求证:af′(
x0
x0+1
)<0; 
    ②求证:f(x)在(0,1)上存在极值点.
考点:利用导数研究函数的单调性,利用导数研究函数的极值
专题:导数的综合应用
分析:(Ⅰ)依据题意得:f(x)=
a
3
x(x+
3b
4a
)2
,令f′(x)=a(x+
3b
4a
)(x+
b
4a
)=0
,解出x,结合图形,得到极小值,解出方程即可得到a,b的值;
(Ⅱ)①f′(x)=ax2+bx+(1-2a),整理得到af′(
x0
x0+1
)=
-a2x0
(x0+1)2(x0+2)
<0

②f′(0)=1-2a,f′(1)=1-a+b.对a分类讨论,依据①得到导数f′(
x0
x0+1
)的正负,再由函数零点的存在性定理,即可得证.
解答: 解:(Ⅰ)f(x)=
a
3
x[x2+
3b
2a
x+
3(1-2a)
a
]

依据题意得:f(x)=
a
3
x(x+
3b
4a
)2
,且
9b2
16a2
=
3-6a
a
≠0

f′(x)=a(x+
3b
4a
)(x+
b
4a
)=0
,得x=-
3b
4a
x=-
b
4a

如图,得f(-
b
4a
)=-
4
3
a

a
3
(-
b
4a
)
(-
b
4a
+
3b
4a
)2
=-
4a
3
,则b=4a,
代入
9b2
16a2
=
3-6a
a
得,b=
4
5

(Ⅱ)①证明:f′(x)=ax2+bx+(1-2a).
a f′(
x0
x0+1
)=a[a(
x0
x0+1
)2+
bx0
x0+1
+(1-2a)]

=ax0[
ax0
(x0+1)2
+
b
x0+1
+
1-2a
x0
]
=ax0[
ax0
(x0+1)2
-
a
x0+2
]
=
-a2x0
(x0+1)2(x0+2)
<0

②f′(0)=1-2a,f′(1)=1-a+b.
0<a<
1
2
,则f′(0)=1-2a>0,由①知f′(
x0
x0+1
)<0,
所以f′(x)在(0,
x0
x0+1
)有零点,从而f(x)在(0,1)上存在极值点.   
a≥
1
2
,由①知f′(
x0
x0+1
)<0,
又f′(1)=1-a+b=1-a-
a(x0+1)
x0+2
-
(1-2a)(x0+1)
x0
=
(3a-1)x0+2(2a-1)
(x0+2)x0
>0,
所以f′(x)在(0,
x0
x0+1
)有零点,从而f(x)在(0,1)上存在极值点.
若a<0,由①知f′(
x0
x0+1
)>0,f′(1)=1-a+b=
(3a-1)x0+2(2a-1)
(x0+2)x0
<0,
所以f′(x)在(0,
x0
x0+1
)有零点,从而f(x)在(0,1)上存在极值点.
综上知f(x)在(0,1)上存在极值点.
点评:本题以函数为载体,考查导数知识的运用,考查曲线的切线,同时考查零点存在性定理,综合性比较强.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网