ÌâÄ¿ÄÚÈÝ

10£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{4}+{y^2}=1$£¬µãPÊÇÍÖÔ²CÉÏÈÎÒâÒ»µã£¬ÇÒµãMÂú×ã$\left\{\begin{array}{l}{x_M}=2¦Ë{x_P}\\{y_M}=¦Ë{y_P}\end{array}\right.$£¨¦Ë£¾1£¬¦ËÊdz£Êý£©£®µ±µãPÔÚÍÖÔ²CÉÏÔ˶¯Ê±£¬µãMÐγɵÄÇúÏßΪC¦Ë£®
£¨¢ñ£©ÇóÇúÏßC¦ËµÄ¹ì¼£·½³Ì£»
£¨¢ò£©¹ýÇúÏßC¦ËÉϵãM×öÍÖÔ²CµÄÁ½ÌõÇÐÏßMAºÍMB£¬Çеã·Ö±ðΪA£¬B£®
¢ÙÈôÇеãAµÄ×ø±êΪ£¨x1£¬y1£©£¬ÇóÇÐÏßMAµÄ·½³Ì£»
¢Úµ±µãMÔ˶¯Ê±£¬ÊÇ·ñ´æÔÚ¶¨Ô²ºãÓëÖ±ÏßABÏàÇУ¿Èô´æÔÚ£¬ÇóÔ²µÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÉèµãMµÄ×ø±êΪ£¨x£¬y£©£¬¶ÔÓ¦µÄµãPµÄ×ø±êΪ$£¨{\frac{x}{2¦Ë}£¬\frac{y}{¦Ë}}£©$£®
ÓÉÓÚµãPÔÚÍÖÔ²CÉÏ£¬µÃ$\frac{{{{£¨{\frac{x}{2¦Ë}}£©}^2}}}{4}+{£¨{\frac{y}{¦Ë}}£©^2}=1$£¬¼´µÃÇúÏßC¦ËµÄ¹ì¼£·½³Ì£®
£¨¢ò£©¢Ùµ±¹ýµãAÇÐÏßµÄбÂÊ´æÔÚʱ£¬
Éè¸ÃÇÐÏߵķ½³ÌΪy-y1=k£¨x-x1£©£¬ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}y=kx+£¨{{y_1}-k{x_1}}£©\\ \frac{x^2}{4}+{y^2}=1\end{array}\right.$£¬
ÓÉ¡÷=0£¬µÃ$1+4{k^2}={£¨{{y_1}-k{x_1}}£©^2}$£¬µÃ$k=-\frac{x_1}{{4{y_1}}}$£»µÃ¹ýµãAµÄÇÐÏß·½³ÌΪ$\frac{{{x_1}x}}{4}+{y_1}y=1$
¹ýµãAÇÐÏßµÄбÂʲ»´æÔÚʱ£¬·ûºÏ·½³Ì$\frac{{{x_1}x}}{4}+{y_2}y=1$£®
¢Ú´æÔÚ¶¨Ô²ºãÓëÖ±ÏßABÏàÇУ»
 ¿ÉµÃA£¬BÁ½µã×ø±ê¶¼Âú×ã·½³Ì$\frac{m}{4}x+ny=1$£¬ÇÒµãMµÄ×ø±êΪ£¨m£¬n£©Âú×ãÇúÏßC¦ËµÄ·½³Ì£º$\frac{m^2}{16}+{n^2}={¦Ë^2}$£¬
¼´Ô­¶¨Oµ½Ö±ÏßABµÄ¾àÀëΪ$\frac{1}{{\sqrt{\frac{m^2}{16}+{n^2}}}}=\frac{1}{¦Ë}$£¬¼´Ö±ÏßABʼÖÕÓëÔ²${x^2}+{y^2}=\frac{1}{¦Ë^2}$ÏàÇУ®

½â´ð ½â£º£¨¢ñ£©ÉèµãMµÄ×ø±êΪ£¨x£¬y£©£¬¶ÔÓ¦µÄµãPµÄ×ø±êΪ$£¨{\frac{x}{2¦Ë}£¬\frac{y}{¦Ë}}£©$£®
ÓÉÓÚµãPÔÚÍÖÔ²CÉÏ£¬µÃ$\frac{{{{£¨{\frac{x}{2¦Ë}}£©}^2}}}{4}+{£¨{\frac{y}{¦Ë}}£©^2}=1$£¬
¼´ÇúÏßC¦ËµÄ¹ì¼£ÊÇÍÖÔ²£¬±ê×¼·½³ÌΪ$\frac{x^2}{{16{¦Ë^2}}}+\frac{y^2}{¦Ë^2}=1$
£¨¢ò£©¢Ùµ±¹ýµãAÇÐÏßµÄбÂÊ´æÔÚʱ£¬
Éè¸ÃÇÐÏߵķ½³ÌΪy-y1=k£¨x-x1£©£¬¼´y=kx+£¨y1-kx1£©
ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}y=kx+£¨{{y_1}-k{x_1}}£©\\ \frac{x^2}{4}+{y^2}=1\end{array}\right.$£¬
¼´$£¨{{k^2}+\frac{1}{4}}£©{x^2}+2k£¨{{y_1}-k{x_1}}£©x$$+[{{{£¨{{y_1}-k{x_1}}£©}^2}-1}]=0$£®
ÓÉ¡÷=0£¬µÃ$1+4{k^2}={£¨{{y_1}-k{x_1}}£©^2}$£¬
¼´$£¨{x_1^2-4}£©{k^2}-2{x_1}{y_1}k$$+£¨{y_1^2-1}£©=0$£¬
$⇒16y_1^2{k^2}+$$8{x_1}{y_1}k+x_1^2=0$£¬$⇒{£¨{4{y_1}k+{x_1}}£©^2}=0$£¬µÃ$k=-\frac{x_1}{{4{y_1}}}$£»
´Ëʱ¹ýµãAµÄÇÐÏß·½³ÌΪ$\frac{{{x_1}x}}{4}+{y_1}y=1$
¹ýµãAÇÐÏßµÄбÂʲ»´æÔÚʱ£¬ÇеãΪ£¨¡À2£¬0£©£¬·½³ÌΪx=¡À2£¬
·ûºÏ·½³Ì$\frac{{{x_1}x}}{4}+{y_2}y=1$ÐÎʽ£®
¢Ú´æÔÚ¶¨Ô²ºãÓëÖ±ÏßABÏàÇУ»
ÉèÇеãB£¨x2£¬y2£©£¬ÓëA£¬BÁ½µã¶ÔÓ¦µÄµãMµÄ×ø±êÉèΪ£¨m£¬n£©£»
ͬÀí¹ýµãBµÄÇÐÏß·½³ÌΪ$\frac{{{x_2}x}}{4}+{y_2}y=1$
ͬʱÁ½ÌõÇÐÏßMAºÍMB¶¼¹ýµãM£¨m£¬n£©£¬ËùÒÔ$\left\{\begin{array}{l}\frac{{{x_1}m}}{4}+{y_1}n=1\\ \frac{{{x_2}m}}{4}+{y_2}n=1\end{array}\right.$£®
¼´A£¬BÁ½µã×ø±ê¶¼Âú×ã·½³Ì$\frac{m}{4}x+ny=1$£¬
ÇÒµãMµÄ×ø±êΪ£¨m£¬n£©Âú×ãÇúÏßC¦ËµÄ·½³Ì£º$\frac{m^2}{16}+{n^2}={¦Ë^2}$£¬
¼´Ô­¶¨Oµ½Ö±ÏßABµÄ¾àÀëΪ$\frac{1}{{\sqrt{\frac{m^2}{16}+{n^2}}}}=\frac{1}{¦Ë}$£¬
ËùÒÔÖ±ÏßABʼÖÕÓëÔ²${x^2}+{y^2}=\frac{1}{¦Ë^2}$ÏàÇУ®

µãÆÀ ±¾Ì⿼²éÁ˶¯µãµÄ¹ì¼£ÎÊÌ⣬ÍÖÔ²µÄÇÐÏßÎÊÌ⣬ͬʱ¿¼²éÁË·ÖÎöÎÊÌâµÄÄÜÁ¦¼°×ª»¯Ë¼Ï룬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø