ÌâÄ¿ÄÚÈÝ
¸ø¶¨ÕýÕûÊýk¡Ý3£¬ÈôÏîÊýΪkµÄÊýÁÐ{an}Âú×㣺¶ÔÈÎÒâµÄi=1¡¢2¡¢¡¡¢k£¬¾ùÓÐai¡Ü
£¨ÆäÖÐSk=a1+a2+¡+ak£©£¬Ôò³ÆÊýÁÐ{an}Ϊ¡°¦£ÊýÁС±£®
£¨¢ñ£©ÅжÏÊýÁÐ-1£¬3£¬5£¬2£¬4ºÍ
£¬
£¬
ÊÇ·ñÊÇ¡°¦£ÊýÁС±£¬²¢ËµÃ÷ÀíÓÉ£»
£¨¢ò£©Èô{an}Ϊ¡°¦£ÊýÁС±£¬ÇóÖ¤£ºai¡Ý0¶Ôi=1£¬2£¬¡£¬kºã³ÉÁ¢£»
£¨¢ó£©Éè{bn}Êǹ«²îΪdµÄÎÞÇîÏîµÈ²îÊýÁУ¬Èô¶ÔÈÎÒâµÄÕýÕûÊým¡Ý3£¬b1£¬b2£¬¡£¬bm¾ù¹¹³É¡°¦£ÊýÁС±£¬Çó{bn}µÄ¹«²îd£®
| Sk |
| k-1 |
£¨¢ñ£©ÅжÏÊýÁÐ-1£¬3£¬5£¬2£¬4ºÍ
| 3 |
| 4 |
| 32 |
| 42 |
| 33 |
| 43 |
£¨¢ò£©Èô{an}Ϊ¡°¦£ÊýÁС±£¬ÇóÖ¤£ºai¡Ý0¶Ôi=1£¬2£¬¡£¬kºã³ÉÁ¢£»
£¨¢ó£©Éè{bn}Êǹ«²îΪdµÄÎÞÇîÏîµÈ²îÊýÁУ¬Èô¶ÔÈÎÒâµÄÕýÕûÊým¡Ý3£¬b1£¬b2£¬¡£¬bm¾ù¹¹³É¡°¦£ÊýÁС±£¬Çó{bn}µÄ¹«²îd£®
¿¼µã£ºÊýÁеÄÇóºÍ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨¢ñ£©¸ù¾Ý¡°¦£ÊýÁС±µÄ¶¨Ò壬¼´¿ÉÅжÏÊýÁÐ-1£¬3£¬5£¬2£¬4ºÍ
£¬
£¬
ÊÇ·ñÊÇ¡°¦£ÊýÁС±£¬
£¨¢ò£©Èô{an}Ϊ¡°¦£ÊýÁС±£¬ÀûÓ÷´Ö¤·¨¼´¿ÉÖ¤Ã÷£ºai¡Ý0¶Ôi=1£¬2£¬¡£¬kºã³ÉÁ¢£»
£¨¢ó£©
| 3 |
| 4 |
| 32 |
| 42 |
| 33 |
| 43 |
£¨¢ò£©Èô{an}Ϊ¡°¦£ÊýÁС±£¬ÀûÓ÷´Ö¤·¨¼´¿ÉÖ¤Ã÷£ºai¡Ý0¶Ôi=1£¬2£¬¡£¬kºã³ÉÁ¢£»
£¨¢ó£©
½â´ð£º
½â£º£¨¢ñ£©¢ÙÒòΪ
=
£¼5£¬ÊýÁÐ-1£¬3£¬5£¬2£¬4²»ÊÇ¡°¦£ÊýÁУ¬
¢ÚÒòΪ
=
£¾
£¬ÓÖ
ÊÇÊýÁÐ
£¬
£¬
ÖеÄ×î´óÏî
ËùÒÔÊýÁÐ
£¬
£¬
ÊÇ¡°¦£ÊýÁС±£®
£¨¢ò£©·´Ö¤·¨Ö¤Ã÷£º
¼ÙÉè´æÔÚijÏîai£¼0£¬Ôò
a1+a2+¡+ai-1+ai+1+¡+ak-1+ak=Sk-ai£¾Sk£®
Éèaj=max{a1£¬a2£¬¡ai-1£¬ai+i¡£¬ak-1+ak}£¬
ÔòSk-ai=a1+a2+¡+ai-1+ai+1+¡+ak-1+ak¡Ü£¨k-1£©aj£¬
ËùÒÔ£¨k-1£©aj£¾Sk£¬¼´aj£¾
£¬
ÕâÓë¡°¦£ÊýÁС±¶¨Òåì¶Ü£¬ËùÒÔÔ½áÂÛÕýÈ·£®
£¨¢ó£©ÓÉ£¨¢ò£©ÎÊ¿ÉÖªb1¡Ý0£¬d¡Ý0£®
¢Ùµ±d=0ʱ£¬b1=b2=¡=bm=
£¼
£¬·ûºÏÌâÉ裻
¢Úµ±d£¾0ʱ£¬b1£¼b2£¼¡£¼bm£¬
ÓÉ¡°¦£ÊýÁС±µÄ¶¨Òå¿ÉÖªbm¡Ü
£¬¼´£¨m-1£©[b1+£¨m-1£©d]¡Ümb1+
m£¨m-1£©d£¬
ÕûÀíµÃ£¨m-1£©£¨m-2£©d¡Ü2b1£¨*£©
ÏÔÈ»µ±m=2b1+3ʱ£¬ÉÏÊö²»µÈʽ£¨*£©¾Í²»³ÉÁ¢
ËùÒÔd£¾0ʱ£¬¶ÔÈÎÒâÕýÕûÊým¡Ý3£¬£¨m-1£©£¨m-2£©d¡Ü2b1²»¿ÉÄܶ¼³ÉÁ¢£®
×ÛÉÏÌÖÂÛ¿ÉÖª{bn}µÄ¹«²îd=0£®
| S5 |
| 5-1 |
| 13 |
| 4 |
¢ÚÒòΪ
| S3 |
| 3-1 |
| 111 |
| 128 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 32 |
| 42 |
| 33 |
| 43 |
ËùÒÔÊýÁÐ
| 3 |
| 4 |
| 32 |
| 42 |
| 33 |
| 43 |
£¨¢ò£©·´Ö¤·¨Ö¤Ã÷£º
¼ÙÉè´æÔÚijÏîai£¼0£¬Ôò
a1+a2+¡+ai-1+ai+1+¡+ak-1+ak=Sk-ai£¾Sk£®
Éèaj=max{a1£¬a2£¬¡ai-1£¬ai+i¡£¬ak-1+ak}£¬
ÔòSk-ai=a1+a2+¡+ai-1+ai+1+¡+ak-1+ak¡Ü£¨k-1£©aj£¬
ËùÒÔ£¨k-1£©aj£¾Sk£¬¼´aj£¾
| Sk |
| k-1 |
ÕâÓë¡°¦£ÊýÁС±¶¨Òåì¶Ü£¬ËùÒÔÔ½áÂÛÕýÈ·£®
£¨¢ó£©ÓÉ£¨¢ò£©ÎÊ¿ÉÖªb1¡Ý0£¬d¡Ý0£®
¢Ùµ±d=0ʱ£¬b1=b2=¡=bm=
| Sm |
| m |
| Sm |
| m-1 |
¢Úµ±d£¾0ʱ£¬b1£¼b2£¼¡£¼bm£¬
ÓÉ¡°¦£ÊýÁС±µÄ¶¨Òå¿ÉÖªbm¡Ü
| Sm |
| m-1 |
| 1 |
| 2 |
ÕûÀíµÃ£¨m-1£©£¨m-2£©d¡Ü2b1£¨*£©
ÏÔÈ»µ±m=2b1+3ʱ£¬ÉÏÊö²»µÈʽ£¨*£©¾Í²»³ÉÁ¢
ËùÒÔd£¾0ʱ£¬¶ÔÈÎÒâÕýÕûÊým¡Ý3£¬£¨m-1£©£¨m-2£©d¡Ü2b1²»¿ÉÄܶ¼³ÉÁ¢£®
×ÛÉÏÌÖÂÛ¿ÉÖª{bn}µÄ¹«²îd=0£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÊýÁÐж¨ÒåµÄÓ¦Óã¬ÕýÈ·Àí½â¡°¦£ÊýÁС±µÄ¶¨ÒåÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®×ÛºÏÐÔ½ÏÇ¿£¬ÓÐÒ»¶¨µÄÄѶȣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿