题目内容

已知函数f(x)=
3
sin2x+sinxcosx-
3
2

(1)求f(x)的最小正周期;
(2)设△ABC的三个角A,B,C所对的边分别为a,b,c,若f(
A
2
+
π
4
)=1,且a=2,求b+c的取值范围.
考点:正弦定理,两角和与差的正弦函数,二倍角的余弦,三角函数的周期性及其求法
专题:三角函数的求值,三角函数的图像与性质
分析:(1)利用二倍角公式以及两角和与差的三角函数,利用三角函数的周期公式求解即可;
(2)利用正弦定理区别b,c的值,b+c为B的正弦函数,通过三角函数值域,求出b+c的取值范围.
解答: 解:(1)函数f(x)=
3
sin2x+sinxcosx-
3
2
=
1
2
sin2x-
3
2
cos2x
=sin(2x-
π
3
),
∴函数的最小正周期为:π.
(2)f(
A
2
+
π
4
)=1,∴sin(A+
π
6
)=1,∵A∈(0,π),∴A=
π
3

∴由正弦定理可得:b=
asinB
sinA
=
4
3
sinB
3
c=
4
3
3
sinC

∴b+c=
4
3
3
(sinB+sinC)
=
4
3
3
[sinB+sin(A+B)]
=
4
3
3
sinB+
4
3
3
sin(
3
-B)]
=4sin(B+
π
6
)

A=
π
3
B∈(0,
3
)

B+
π
6
(
π
6
6
)

sin(B+
π
6
)∈(
1
2
,1]
4sin(B+
π
6
)
∈(2,4]
∴b+c的取值范围:(2,4].
点评:本题考查正弦定理的应用,三角函数的化简求值,三角函数的周期的求法,函数的值域的应用,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网