题目内容

平面直角坐标系有两点P(1,cosx),Q(cosx,1),其中x∈[-
π
4
π
4
];
(1)求向量
OP
OQ
的夹角θ的余弦用x表示的函数f(x);
(2)求题(1)中f(x)的值域.
考点:平面向量数量积的运算,三角函数中的恒等变换应用
专题:三角函数的图像与性质,平面向量及应用
分析:(1)由已知求出向量
OP
OQ
的坐标,代入cosθ=
OP
OQ
|
OP
|•|
OQ
|
求出f(x);
(2)由(1)可求得f(x)=
2cosx
1+cos2x
=
2
cosx+
1
cosx
由x的范围可求cosθ的范围,结合函数的单调性即可求cosθ的最小值.
解答: 解:(1)由于
OP
OQ
=2cosx
…(2分)
|
OP
|•|
OQ
|=1+cos2x
…(4分)
cosθ=
OP
OQ
|
OP
|•|
OQ
|
=
2cosx
1+cos2x
=f(x)
…(6分)
(2)∵x∈[-
π
4
π
4
]

cosx∈[
2
2
,1]

f(x)=
2cosx
1+cos2x
=
2
cosx+
1
cosx

g(x)=x+
1
x
…(8分)
设x1x2∈[
2
2
,1]
,且x1<x2
g(x1)-g(x2)=x1+
1
x1
-x2-
1
x2
=(x1-x2)(
x1x2-1
x1x2
)<0

g(x)=x+
1
x
[
2
2
,1]
上是减函数.        …(10分)
2≤cosx+
1
cosx
3
2
2

2
2
3
≤f(x)≤1

即f(x)的值域是[
2
2
3
,1]
.            …(12分)
点评:本题主要考查了向量的数量积的性质的坐标表示,向量与 三角函数及函数的单调性等知识的综合应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网