题目内容
二项式(2
-
)6的展开式的常数项是( )
| x |
| 1 | ||
2
|
| A、20 | B、-20 |
| C、15 | D、-15 |
考点:二项式系数的性质
专题:二项式定理
分析:在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.
解答:
解:二项式(2
-
)6的展开式的通项公式为Tr+1=
•(2
)6-r•(-1)r•(2
)-r,
令6-2r=0,求得r=3,
故展开式的常数项是
×(-1)=-20,
故答案为:-20.
| x |
| 1 | ||
2
|
| C | r 6 |
| x |
| x |
令6-2r=0,求得r=3,
故展开式的常数项是
| C | 3 6 |
故答案为:-20.
点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.
练习册系列答案
相关题目
已知f(x)是以5为周期的奇函数,f(-3)=1且tanα=2,则f(20sinαcosα)的值是( )
| A、1 | B、-1 | C、3 | D、8 |
已知集合M={x|x2-x-2≤0},N={x|x-a<0},若M∩N≠∅,则a的范围为( )
| A、(-1,+∞) |
| B、[-1,+∞) |
| C、(-∞,2] |
| D、(-∞,-1]∪[2,+∞) |
A、
| ||
| B、64 | ||
C、
| ||
D、
|
函数y=-sin2x-3cosx+3的最小值是( )
| A、2 | ||
| B、0 | ||
C、
| ||
| D、6 |
已知扇形圆心角的弧度数为2,周长为4,则此扇形的面积为( )
| A、1 | ||
| B、2 | ||
C、
| ||
D、
|
已知x1、x2是函数f(x)=
-3的两个零点,若a<x1<x2,则f(a)的值是( )
| ex |
| x |
| A、f(a)=0 |
| B、f(a)>0 |
| C、f(a)<0 |
| D、f(a)的符号不确定 |
设不等式组
,表示的平面区域为Ω,在区域Ω内任取一点P(x,y),则P点的坐标满足不等式x2+y2≤2的概率为( )
|
A、
| ||||
B、
| ||||
C、
| ||||
D、
|