题目内容
对任意x,y满足f(x+y)=f(x)f(y),若f(1)=2,n∈N*,则f(
)= .
| 1 |
| 3n |
考点:抽象函数及其应用
专题:计算题,函数的性质及应用,等差数列与等比数列
分析:由题意可得,f(1)=f3(
),f(
)=f3(
),f(
)=f3(
),…,f(
)=f3(
),利用迭代法求函数的值.
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n-1 |
| 1 |
| 3n |
解答:
解:∵f(x+y)=f(x)f(y),
∴f(
)•f(
)•f(
)
=f(
)•f(
)=f(
)=f(
),
∴f(
)=f(
)•f(
)•f(
)=f3(
),
∴f(1)=f3(
),f(
)=f3(
),
f(
)=f3(
),…,
f(
)=f3(
),
∴f(1)=f3(
)=f9(
)=f33(
)=…=f3n(
),
∴f3n(
)=2,
故f(
)=2
,
故答案为:2
.
∴f(
| 1 |
| 3n |
| 1 |
| 3n |
| 1 |
| 3n |
=f(
| 2 |
| 3n |
| 1 |
| 3n |
| 3 |
| 3n |
| 1 |
| 3n-1 |
∴f(
| 1 |
| 3n-1 |
| 1 |
| 3n |
| 1 |
| 3n |
| 1 |
| 3n |
| 1 |
| 3n |
∴f(1)=f3(
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 32 |
f(
| 1 |
| 32 |
| 1 |
| 33 |
f(
| 1 |
| 3n-1 |
| 1 |
| 3n |
∴f(1)=f3(
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n |
∴f3n(
| 1 |
| 3n |
故f(
| 1 |
| 3n |
| 1 |
| 3n |
故答案为:2
| 1 |
| 3n |
点评:本题考查了函数的代入应用,同时考查了迭代法的应用,属于中档题.
练习册系列答案
相关题目