题目内容
设P是椭圆
+
=1上一点,F1、F2是椭圆的焦点,若|PF1|等于4,则|PF2|等于( )
| x2 |
| 169 |
| y2 |
| 25 |
| A、22 | B、21 | C、20 | D、13 |
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:由已知条件,利用|PF1|+|PF2|=2a,能求出结果.
解答:
解:∵P是椭圆
+
=1上一点,F1、F2是椭圆的焦点,|PF1|等于4,
∴|PF2|=2×13-|PF1|=26-4=22.
故选:A.
| x2 |
| 169 |
| y2 |
| 25 |
∴|PF2|=2×13-|PF1|=26-4=22.
故选:A.
点评:本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用.
练习册系列答案
相关题目
1.056的计算结果精确到0.01的近似值是( )
| A、1.23 | B、1.24 |
| C、1.33 | D、1.34 |
将一枚骰子先后掷两次,向上点数之和为x,则x≥7的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
若椭圆焦点在x轴上且经过点(-4,0),c=3,其焦点在x轴上,则该椭圆的标准方程为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
已知在△ABC中,∠C=90°,BC=2,则
•
=( )
| AB |
| BC |
| A、2 | B、-4 | C、-2 | D、4 |
已知椭圆
+
=1的一个焦点为(2,0),则椭圆的长轴长是( )
| x2 |
| a2 |
| y2 |
| 2 |
A、
| ||
B、2
| ||
| C、4 | ||
D、2
|