题目内容
4.分析 根据图象信息即可求出A,ω 的值.
解答 解:根据图象,可知最高点为3,最低点-3,
∴A=3.
从图可以看出周期T=π,即$\frac{2π}{ω}$=π,
∴ω=2.
故答案为:3,2.
点评 本题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决本题的关键.要求熟练掌握函数图象之间的变化关系.
练习册系列答案
相关题目
15.已知抛物线C1:x2=2y的焦点为F,以F为圆心的圆C2交C1于A、B,交C1的准线于C、D,若四边形ABCD是矩形,则圆C2的方程为( )
| A. | x2+(y-$\frac{1}{2}$)2=4 | B. | x2+(y-$\frac{1}{2}$)2=12 | C. | x2+(y-1)2=4 | D. | x2+(y-1)2=12 |
12.已知θ是直线2x+2y-1=0的倾斜角,则sinθ的值是( )
| A. | $-\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | 1 | D. | -1 |
9.
如图,在三棱锥P-ABC中,平面PAB⊥平面ABC,△PAB是等边三角形,AC⊥BC,且AC=BC=2,O、D分别是AB,PB的中点.
(1)求证:PA∥平面COD;
(2)求三棱锥P-ABC的体积.
(1)求证:PA∥平面COD;
(2)求三棱锥P-ABC的体积.
13.
在正方形ABCD中,点E在边AD上(端点除外),现将△ABE沿直线BE翻折至△A′BE,连结A′C、A′D,记二面角A′-BE-C为α(0<α<π),则( )
| A. | 存在α,使得A′E⊥面A′BC | B. | 存在α,使得A′B⊥面A′CD | ||
| C. | 存在α,使得A′E⊥面A′CD | D. | 存在α,使得A′B⊥面A′DE |
14.复数z=1+$\frac{2-i}{2+4i}$(i是虚数单位)在复平面内所对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |