题目内容

14.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段图象如图所示.
(1)求函数的解析式;
(2)求这个函数的单调递减区间.

分析 (1)根据图象求出A,ω 和φ,即可求函数y的解析式;
(2)根据函数解析式,结合三角函数的性质可得结论.

解答 解:根据图象信息,可知A=2,
函数周期$\frac{1}{2}$T=$\frac{3π}{8}-(-\frac{π}{8})$=$\frac{π}{2}$,
∴T=π,即$\frac{2π}{ω}=π$,
∴ω=2.
则f(x)=2sin(2x+φ)
图象过($-\frac{π}{8}$,2).
即2=2sin($-\frac{π}{8}×2+$φ).
可得:$-\frac{π}{4}+$φ=$\frac{π}{2}+2kπ$,k∈Z.
∵|φ|<π,
∴φ=$\frac{3π}{4}$.
∴函数的解析式$y=2sin({2x+\frac{3π}{4}})$;
(2)令$\frac{π}{2}+2kπ≤$2x$+\frac{3π}{4}$$≤\frac{3π}{2}+2kπ$,k∈Z.
得:$-\frac{π}{8}+kπ≤x≤\frac{3π}{8}+kπ$,
∴函数的单调递减区间为$[{-\frac{π}{8}+kπ,\frac{3π}{8}+kπ}]$,k∈Z.

点评 本题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决本题的关键.要求熟练掌握函数图象之间的变化关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网