题目内容

4.已知|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=$\sqrt{3}$,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,点C在∠AOB内,且∠AOC=60°,设$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),则$\frac{m}{n}$等于(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

分析 根据题意,建立平面直角坐标系,用坐标表示向量,利用∠AOC=30°,即可求得结论

解答 解:∵$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,∴$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,
建立如图所示的平面直角坐标系:
则$\overrightarrow{OA}$=(2,0),$\overrightarrow{OB}$=(0,$\sqrt{3}$),∵$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,
∴$\overrightarrow{OC}$=(2m,$\sqrt{3}$n),
∵∠AOC=60°,∴tan60°=$\frac{\sqrt{3}n}{2m}$=$\sqrt{3}$
∴$\frac{m}{n}$=$\frac{1}{2}$;
故选:A.

点评 本题考查向量知识的运用,考查向量的坐标运算,考查学生的计算能力,关键是正确建系,利用坐标法解答;属于中档题.

练习册系列答案
相关题目
19.为了对2016年某校中考成绩进行分析,在60分以上的全体同学中随机抽取8位,他们的数学、物理、化学分数(折算成百分制)事实上对应如表:
学生编号12345678
数学分数x6065707580859095
物理分数y7277808488909395
化学分数z6772768084879092
(1)若规定80分以上为优秀,请填写如下2×2列联表,问是否有90%的把握认为是否优秀与科目有关;
  优秀 不优秀 合计
 数学   
 物理   
 合计   
(2)用变量y与x,z与x的相关系数说明物理与数学、化学与数学的相关程度;
(3)求y与x,z与x的线性回归方程(系数精确到0,01),当某位同学的数学成绩为50分时,估计其物理、化学两科的成绩.
参考公式:相关系数r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}•\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$,
回归直线方程是:$\widehat{y}$=bx+a,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$,
参考数据:$\overline{x}$=77.5,$\overline{y}$=85,$\overline{z}$=81,$\sum_{i=1}^{8}$(xi-$\overline{x}$)2≈1050,$\sum_{i=1}^{8}$(yi-$\overline{y}$)2≈456,$\sum_{i=1}^{8}$(zi-$\overline{z}$)2≈550,≈688,$\sum_{i=1}^{8}$(xi-$\overline{x}$)(zi-$\overline{z}$)≈755,$\sqrt{1050}$≈32.4,$\sqrt{456}$≈21.4,$\sqrt{550}$≈23.5.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网