题目内容

已知a>0,b>0,c>0,且asin2θ+bcos2θ<c,则(  )
A、
a
sin2θ+
b
cos2θ<
c
B、
a
sin2θ+
b
cos2θ>
c
C、
a
sinθ+
b
cosθ<
c
D、
a
sinθ+
b
cosθ>
c
考点:不等关系与不等式
专题:不等式的解法及应用
分析:不妨设a≤b,由三角函数公式有a≤
a+b
2
+
b-a
2
cos2θ≤b,进而可得
a
b
c
,由
a
sin2θ+
b
cos2θ<
c
sin2θ+
c
cos2θ可得结论.
解答: 解:∵asin2θ+bcos2θ
=a
1-cos2θ
2
+b
1+cos2θ
2

=
a+b
2
+
b-a
2
cos2θ,
不妨设a≤b,则有a≤
a+b
2
+
b-a
2
cos2θ≤b,
又∵asin2θ+bcos2θ<c,∴a≤b<c,
∵a>0,b>0,c>0,∴
a
b
c

a
sin2θ+
b
cos2θ<
c
sin2θ+
c
cos2θ=
c

a
sin2θ+
b
cos2θ<
c

故选:A
点评:本题考查不等式与不等关系,涉及三角函数的运算,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网