题目内容
已知函数f(x)在R上满足f(x+y)=f(x)+f(y),且 当x>0时,f(x)>0,f(1)=2
(1)求f(0)、f(3)的值.
(2)判断f(x)的单调性.
(1)求f(0)、f(3)的值.
(2)判断f(x)的单调性.
考点:抽象函数及其应用
专题:函数的性质及应用
分析:(1)令x=y=0,可得f(0)=0,再令x=y=1,可得f(2)=4,再x=2,y=1,则有f(3)=6,
(2)用定义判定f(x)的单调性;
(2)用定义判定f(x)的单调性;
解答:
解:(1)∵对任意x,y∈R,有f(x+y)=f(x)+f(y),
令x=y=0,则有f(0)=f(0)+f(0),
∴f(0)=0,
令x=y=1,则有f(2)=f(1)+f(1),
∴f(2)=4,
令x=2,y=1,则有f(3)=f(2)+f(1),
∴f(3)=6;
(2)∵f(0)=0,f(x+y)=f(x)+f(y),
∴f(x-x)=f(x)+f(-x),
∴f(x)=-f(-x),函数是奇函数,
任取x1,x2∈R,设x1<x2,∴x2-x1>0,又x>0时,f(x)>0,
则有f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1)>0,
∴f(x1)<f(x2),
∴f(x)是R上的增函数;
令x=y=0,则有f(0)=f(0)+f(0),
∴f(0)=0,
令x=y=1,则有f(2)=f(1)+f(1),
∴f(2)=4,
令x=2,y=1,则有f(3)=f(2)+f(1),
∴f(3)=6;
(2)∵f(0)=0,f(x+y)=f(x)+f(y),
∴f(x-x)=f(x)+f(-x),
∴f(x)=-f(-x),函数是奇函数,
任取x1,x2∈R,设x1<x2,∴x2-x1>0,又x>0时,f(x)>0,
则有f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1)>0,
∴f(x1)<f(x2),
∴f(x)是R上的增函数;
点评:本题考查了抽象函数的应用,函数的单调性与奇偶性的判定以及应用问题,是中档题.
练习册系列答案
相关题目
过点M(1,-2)的直线与x轴、y轴分别交于P、Q两点,若M恰为线段PQ的中点,则直线PQ的方程为( )
| A、2x+y=0 |
| B、2x-y-4=0 |
| C、x+2y+3=0 |
| D、x-2y-5=0 |
在小时候,我们用手指练习数数.一个小朋友按如下规则练习数数,规则如下:从大拇指开始数1,到小指数5,再倒回去数,无名指数6,到大拇指数9,再倒回来,食指数10,到小指数13,再倒回去…按此规律数下去,则数到2025时对应的指头是( )
| A、大拇指 | B、食指 |
| C、中指 | D、无名指 |
已知圆C:x2+y2-2x+4y-11=0,在区间[-4,6]上任取实数m,则直线l:x+y+m=0与圆C相交所得△ABC为钝角三角形(其中A、B为交点,C为圆心)的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
下列命题是真命题的是( )
| A、到两定点距离之和为常数的点的轨迹是椭圆 | ||||
B、到定直线x=
| ||||
C、到定点F(-c,0)和定直线x=-
| ||||
D、到定直线x=
|