题目内容

已知数列{an}是公差不为0的等差数列,a3=6,且a1,a2,a4成等比数列,数列{bn}满足bn+1=2bn+1,n∈N*,且b1=3
(1)求数列{an}和{bn}的通项公式
(2)设数列{cn}的前n项和为Sn,且cn=
1
anlog2(bn+1)
,证明:Sn
1
2
考点:数列与不等式的综合,数列的求和
专题:综合题,等差数列与等比数列
分析:(1)由已知条件,利用等差数列的通项公式和等比数列的性质列出方程组,求出首项和公差,由此能求出数列{an}的通项公式.
(2)利用裂项相消法化简,由其结果可得证.
解答: (1)解:设公差为d≠0,
∵a3=6,且a1,a2,a4成等比数列,
∴a1+2d=6,且(a1+d)2=a1•(a1+3d),
解得a1=2,d=2.
∴数列{an}的通项公式为an=2+(n-1)×2=2n;
∵bn+1=2bn+1,
∴bn+1+1=2(bn+1),
∵b1=3,
∴数列{bn+1}是以4为首项,2为公比的等比数列,
∴bn+1=2n+1
∴bn=2n+1-1;
(2)证明:cn=
1
anlog2(bn+1)
=
1
2n(n+1)
=
1
2
1
n
-
1
n+1
),
∴Sn=
1
2
(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)=
1
2
(1-
1
n+1
)<
1
2

∴Sn
1
2
点评:本题考查数列的通项公式和前n项和公式的求法,考查裂项相消法对数列求和,考查学生的运算求解能力,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网