题目内容

已知数列{an}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=an+2 an,求数列{bn}的前n项和为Sn
考点:数列的求和,等比数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件利用等差数列通项公式、前n项和公式及等比数列性质,求出首项和公差,由此能求出数列{an}的通项公式.
(2)由bn=2n+22n=2n+4n,利用分组求和法能求出数列{bn}的前n项和.
解答: 解:(Ⅰ)设数列{an}的公差为d,由a1=2和a2,a3,a4+1成等比数列,
得(2+2d)2=(2+d)(3+3d),解得d=2,或d=-1,…(2分)
当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,…(4分)
∴an=a1+(n-1)d=2+2(n-1)=2n,
即数列{an}的通项公式an=2n.…(6分)
(2)∵bn=2n+22n=2n+4n…(8分)
Sn=(2+4)+(4+42)+…+(2n+4n)
=(2+4+…+2n)+(4+42+…+4n
=
n(2+2n)
2
+
4(1-4n)
1-4

=n2+n+
4
3
(4n-1)
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意分组求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网