题目内容

(1)已知a+b=2
2
,求证:a2+b2≥4.
(2)已知a>b>c,求证:
1
a-b
+
1
b-c
4
a-c
考点:基本不等式
专题:不等式的解法及应用
分析:(1)利用2(a2+b2)≥(a+b)2即可得出.
(2)由a>b>c,可得a-b>0,b-c>0,a-c>0,可得
1
a-b
+
1
b-c
4
a-c
?
a-c
a-b
+
a-c
b-c
≥4

a-c
a-b
+
a-c
b-c
=
(a-b)+(b-c)
a-b
+
(a-b)+(b-c)
b-c
化简后利用基本不等式即可.
解答: 证明:(1)∵a+b=2
2

∴2(a2+b2)≥(a+b)2=(2
2
)2
=8,
∴a2+b2≥4.
(2)∵a>b>c,∴a-b>0,b-c>0,a-c>0,
1
a-b
+
1
b-c
4
a-c
?
a-c
a-b
+
a-c
b-c
≥4

a-c
a-b
+
a-c
b-c
=
(a-b)+(b-c)
a-b
+
(a-b)+(b-c)
b-c

=2+
b-c
a-b
+
a-b
b-c
≥2+2
b-c
a-b
a-b
b-c
=4,当且仅当b-c=a-b时取等号.
因此原式成立.
点评:本题考查了变形利用基本不等式的性质,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网