题目内容
| OA |
| a |
| OB |
| b |
| a |
| b |
| a |
| b |
(1)求|
| a |
| b |
(2)若(
| ||
|
|
| ||
|
|
| a |
| b |
| AB |
| AM |
| BA |
| BN |
| OM |
| ON |
考点:平面向量数量积的运算
专题:计算题,平面向量及应用
分析:(1)运用向量数量积的性质:向量的平方即为模的平方,计算即可得到;
(2)通过条件(
+
)•(
-
)=0,化简整理可得|
|=|
|,由(1)的结论即有△OAB为正三角形,再由向量垂直的条件,即可计算得到所求值.
(2)通过条件(
| ||
|
|
| ||
|
|
| a |
| b |
| a |
| b |
解答:
解:(1)由于|
-
|=2,则|
-
|2=(
-
)2=
2+
2-2
•
=4,
又
•
=2,
则有|
|2+|
|2=
2+
2=8;
(2)由(
+
)•(
-
)=0,
则
+
-
-
=|
|-|
|+
-
=(|
|-|
|)(1+
)=0,
则有|
|=|
|,由(1)的结论得|
|=|
|=2,
又|
|=|
-
|=2,所以△OAB为正三角形,
则
•
=(
+
)•
,
因为N为AB的中点,ON⊥AB,
从而
•
=0,|
|=
×2=
,
则有
•
=(
)2=3.
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
又
| a |
| b |
则有|
| a |
| b |
| a |
| b |
(2)由(
| ||
|
|
| ||
|
|
| a |
| b |
则
| ||
|
|
| ||||
|
|
| ||||
|
|
| ||
|
|
| a |
| b |
| 2 | ||
|
|
| 2 | ||
|
|
| a |
| b |
| 2 | ||||
|
|
则有|
| a |
| b |
| a |
| b |
又|
| AB |
| a |
| b |
则
| OM |
| ON |
| ON |
| NM |
| ON |
因为N为AB的中点,ON⊥AB,
从而
| ON |
| NM |
| ON |
| ||
| 2 |
| 3 |
则有
| OM |
| ON |
| ON |
点评:本题考查向量的数量积的性质,考查正三角形的性质,考查运算能力,运用向量垂直的条件是解题的关键.
练习册系列答案
相关题目
已知复数z1=3+4i,z2=t+i,且z1•z2是实数,则实数t等于( )
A、
| ||
B、
| ||
C、-
| ||
D、-
|