题目内容
在△ABC中,角A,B,C的对应边分别是a,b,c满足b2+c2=bc+a2.
(Ⅰ)求角A的大小;
(Ⅱ)已知等差数列{an}的公差不为零,若a1cosA=1,且a2,a4,a8成等比数列,求{
}的前n项和Sn.
(Ⅰ)求角A的大小;
(Ⅱ)已知等差数列{an}的公差不为零,若a1cosA=1,且a2,a4,a8成等比数列,求{
| 4 |
| anan+1 |
考点:数列的求和,等比数列的性质,余弦定理
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件推导出
=
=
,所以cosA=
,由此能求出A=
.
(Ⅱ)由已知条件推导出(a1+3d)2=(a1+d)(a1+7d),且d≠0,由此能求出an=2n,从而得以
=
=
-
,进而能求出{
}的前n项和Sn.
| b2+c2-a2 |
| 2bc |
| bc |
| 2bc |
| 1 |
| 2 |
| 1 |
| 2 |
| π |
| 3 |
(Ⅱ)由已知条件推导出(a1+3d)2=(a1+d)(a1+7d),且d≠0,由此能求出an=2n,从而得以
| 4 |
| anan+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 4 |
| anan+1 |
解答:
解:(Ⅰ)∵b2+c2-a2=bc,
∴
=
=
,
∴cosA=
,
∵A∈(0,π),∴A=
.
(Ⅱ)设{an}的公差为d,
∵a1cosA=1,且a2,a4,a8成等比数列,
∴a1=
=2,且a42=a2•a8,
∴(a1+3d)2=(a1+d)(a1+7d),且d≠0,解得d=2,
∴an=2n,
∴
=
=
-
,
∴Sn=(1-
)+(
-
)+(
-
)+…+(
-
)
=1-
=
.
∴
| b2+c2-a2 |
| 2bc |
| bc |
| 2bc |
| 1 |
| 2 |
∴cosA=
| 1 |
| 2 |
∵A∈(0,π),∴A=
| π |
| 3 |
(Ⅱ)设{an}的公差为d,
∵a1cosA=1,且a2,a4,a8成等比数列,
∴a1=
| 1 |
| cosA |
∴(a1+3d)2=(a1+d)(a1+7d),且d≠0,解得d=2,
∴an=2n,
∴
| 4 |
| anan+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
| n |
| n+1 |
点评:本题考查角的大小的求法,考查数列的前n项和的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
“函数f(x)=cos2ax-sin2ax的最小正周期为2π”是“a=-
”的( )
| 1 |
| 2 |
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
已知
=(3,2),
=(k,1),且
∥
,则k的值是( )
| a |
| b |
| a |
| b |
A、
| ||
B、-
| ||
C、
| ||
D、-
|