题目内容
某几何体的三视图如图所示,则该几何体的体积为( )

| A、16+8π |
| B、8+8π |
| C、16+16π |
| D、8+16π |
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:根据几何体的三视图,得出该几何体是下面为半圆柱,上面为长方体的组合体,由此求出它的体积.
解答:
解:根据几何体的三视图,得;
该几何体是下面为半圆柱,上面为长方体的组合体,
半圆柱的底面半径为2,高为4,
∴半圆柱的体积为:
×π•22×4=8π;
长方体的长宽高分别为4,2,2,
∴长方体的体积为4×2×2=16,
∴该几何体的体积为V=16+8π.
故选:A.
该几何体是下面为半圆柱,上面为长方体的组合体,
半圆柱的底面半径为2,高为4,
∴半圆柱的体积为:
| 1 |
| 2 |
长方体的长宽高分别为4,2,2,
∴长方体的体积为4×2×2=16,
∴该几何体的体积为V=16+8π.
故选:A.
点评:本题考查了空间几何体的三视图的应用问题,解题时应根据几何体的三视图得出该几何体的结构特征,是基础题目.
练习册系列答案
相关题目
已知f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=
,那么在区间(-1,3)内,关于x的方程f(x)=kx+k(k∈R)有4个根,则k的取值范围为( )
| x |
A、0<k≤
| ||||||
B、0<k≤
| ||||||
C、0<k<
| ||||||
D、0<k<
|
某几何体的三视图如图所示,则该几何体的表面积( )
A、
| ||
B、2
| ||
C、(2
| ||
D、(2
|
执行如图所示的程序框图,输出的x值为( )

| A、4 | B、5 | C、6 | D、7 |