题目内容
13.已知四棱锥P-ABCD的顶点都在球O的球面上,底面ABCD是矩形,平面PAD⊥底面ABCD,△PAD为正三角形,AB=2AD=4,则球O的表面积为( )| A. | $\frac{56π}{3}$ | B. | $\frac{64π}{3}$ | C. | 24π | D. | $\frac{80π}{3}$ |
分析 求出△PAD所在圆的半径,利用勾股定理求出球O的半径R,即可求出球O的表面积.
解答 解:令△PAD所在圆的圆心为O1,则圆O1的半径r=$\frac{2\sqrt{3}}{3}$,
因为平面PAD⊥底面ABCD,
所以OO1=$\frac{1}{2}$AB=2,
所以球O的半径R=$\sqrt{4+(\frac{2\sqrt{3}}{3})^{2}}$=$\frac{4}{\sqrt{3}}$,
所以球O的表面积=4πR2=$\frac{64π}{3}$.
故选B.
点评 本题考查球O的表面积,考查学生的计算能力,比较基础.
练习册系列答案
相关题目
1.
某零件的三视图如图所示,则该零件的体积为( )
| A. | $\frac{7}{3}$ | B. | $\frac{8-π}{3}$ | C. | $\frac{8}{3}$ | D. | $\frac{7-π}{3}$ |
18.已知向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=|{\overrightarrow b}|=|{\overrightarrow a+\overrightarrow b}|=1$,则$|{2\overrightarrow a+\overrightarrow b}|$=( )
| A. | 3 | B. | $\sqrt{3}$ | C. | 7 | D. | $\sqrt{7}$ |
2.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x-1}-2,x≥1}\\{{2}^{1-x}-2,x<1}\end{array}\right.$,则不等式f(x-1)≤0的解集为( )
| A. | {x|0≤x≤2} | B. | {x|0≤x≤3} | C. | {x|1≤x≤2} | D. | {x|1≤x≤3} |
3.已知函数f(x)=alnx-ax-3(a∈R).若函数y=f(x)的图象在点(2,f(2))处切线的倾斜角为$\frac{π}{4}$,对于任意t∈[1,2]函数g(x)=x3+x2[f′(x)+$\frac{m}{2}$]在区间(t,3)上总不是单调函数,则实数 m 的取值范围是( )
| A. | ?(-∞,-5)? | B. | ?(-$\frac{37}{3}$,-5)? | C. | (-9,+∞)?? | D. | (-$\frac{37}{3}$,-9)? |