题目内容

3.已知函数f(x)=alnx-ax-3(a∈R).若函数y=f(x)的图象在点(2,f(2))处切线的倾斜角为$\frac{π}{4}$,对于任意t∈[1,2]函数g(x)=x3+x2[f′(x)+$\frac{m}{2}$]在区间(t,3)上总不是单调函数,则实数 m 的取值范围是(  )
A.?(-∞,-5)?B.?(-$\frac{37}{3}$,-5)?C.(-9,+∞)??D.(-$\frac{37}{3}$,-9)?

分析 求出函数的导数,利用切线的斜率求出a,利用函数的单调性,任意t∈[1,2]函数g(x)=x3+x2[f′(x)+$\frac{m}{2}$]在区间(t,3)上总不是单调函数,转化为函数由极值,然后求解函数的值域即可得到结果.

解答 解:由函数f(x)=alnx-ax-3(a∈R).可得f′(x)=$\frac{a}{x}$-a,
$f'(2)=-\frac{a}{2}=1$得a=-2,对于任意t∈[1,2]函数$g(x)={x^3}+{x^2}[{f'(x)+\frac{m}{2}}]$=x3+x2(-$\frac{2}{x}$+2+$\frac{m}{2}$)
在区间(t,3)上总不是单调函数,只需$g(x)={x^3}+(\frac{m}{2}+2){x^2}-x$2在(2,3)上不是单调函数,
故g'(x)=3x2+(m+4)x-2在(2,3)上有零点,即方程$m=-3x-4+\frac{2}{x}$在(2,3)上有解,
而$y=-3x-4+\frac{2}{x}$在(2,3)上单调递减,故其值域为$({-\frac{37}{3},-9})$.
故选:D.

点评 本题考查函数的导数的应用,函数的极值以及函数的单调性的判断,考查转化思想以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网