题目内容
已知变量x,y满足
,则xy的最大值为( )
|
| A、1 | B、2 | C、3 | D、4 |
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对于的平面区域,由z=xy,则y=
为双曲线,利用数形结合即可得到结论.
| z |
| x |
解答:
解:作出不等式组对应的平面区域如图:
由z=xy,则y=
为双曲线,
要使z=xy最大,则z>0,
∵z=xy对应的双曲线的对称轴为y=x,
∴由图象可知当z=xy与x+y-4=0相切时,z=xy取得最大值,
由
,
解得
,即A(2,2),
此时z=2×2=4,
故选:D.
由z=xy,则y=
| z |
| x |
要使z=xy最大,则z>0,
∵z=xy对应的双曲线的对称轴为y=x,
∴由图象可知当z=xy与x+y-4=0相切时,z=xy取得最大值,
由
|
解得
|
此时z=2×2=4,
故选:D.
点评:本题主要考查线性规划的应用,以及双曲线的性质,利用数形结合是解决本题的关键,本题涉及的知识点较多,综合性较强,有一定的难度.
练习册系列答案
相关题目
设变量x,y满足
,则目标函数z=3x-y的最小值为( )
|
| A、1 | B、2 | C、3 | D、4 |
已知函数f(x)为奇函数,且当x>0时,f(x)=x2+2x,则f(-1)=( )
| A、1 | B、-1 | C、3 | D、-3 |
设变量x,y满足约束条件
,则目标函数z=-x-y的取值范围是( )
|
| A、[-4,0] |
| B、[-8,-2] |
| C、[-4,-2] |
| D、[-4,-1] |
已知变量x,y满足约束条件
,则z=3x+2y的最大值为( )
|
| A、1 | B、13 | C、11 | D、-1 |