题目内容

已知定义在R上的函数f(x)=|x+1|+|x-2|的最小值为a.
(Ⅰ)求a的值;
(Ⅱ)若p,q,r为正实数,且p+q+r=a,求证:p2+q2+r2≥3.
考点:不等式的证明,函数的最值及其几何意义
专题:不等式的解法及应用,推理和证明
分析:(Ⅰ)利用绝对值不等式的几何意义可得f(x)=|x+1|+|x-2|≥|(x+1)-(x-2)|=3,从而可得a的值;
(Ⅱ)利用重要不等式p2+q2≥2pq,p2+r2≥2pr,q2+r2≥2qr,可得3(p2+q2+r2)≥p2+q2+r2+2pq+2pr+2qr=(a+b+c)2=32=9,于是可证的结论.
解答: (Ⅰ)解:∵f(x)=|x+1|+|x-2|≥|(x+1)-(x-2)|=3,
∴f(x)min=3,即a=3.
(Ⅱ)证明:由(Ⅰ)知,a=3,
因为p2+q2≥2pq,p2+r2≥2pr,q2+r2≥2qr,
∴2(p2+q2+r2)≥2pq+2pr+2qr,
∴3(p2+q2+r2)≥p2+q2+r2+2pq+2pr+2qr=(a+b+c)2=32=9,
∴p2+q2+r2≥3.
点评:本题考查绝对值不等式的性质及应用,着重考查重要不等式的应用,考查推理证明的能力,考查转化思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网