题目内容
已知数列{an}中,a1=1,an+1=
(n∈N*).
(1)求证:{
+
}为等比数列,并求{an}的通项公式an;
(2)数列{bn}满足bn=(3n-1)•
•an,求数列{bn}的前n项和Tn.
| an |
| an+3 |
(1)求证:{
| 1 |
| an |
| 1 |
| 2 |
(2)数列{bn}满足bn=(3n-1)•
| n |
| 2n |
考点:数列的求和,数列递推式
专题:点列、递归数列与数学归纳法
分析:(1)根据数列的递推关系,结合等比数列的定义即可证明{
+
}为等比数列,并求{an}的通项公式an;
(2)利用错误相减法即可求出数列的和.
| 1 |
| an |
| 1 |
| 2 |
(2)利用错误相减法即可求出数列的和.
解答:
解(1)∵a1=1,an+1═
,
∴
=
=1+
,
即
+
=
+
=3(
+
),
则{
+
}为等比数列,公比q=3,
首项为
+
=1+
=
,
则
+
=
•3n-1,
即
=-
+
•3n-1=
(3n-1),即an=
.
(2)bn=(3n-1)•
•an=
,
则数列{bn}的前n项和Tn=
+
+
+…+
①
Tn=
+
+
+…+
②,
两式相减得
Tn=1+
+
+…+
-
=
-
=2-
-
=2-
,
则 Tn=4-
.
| an |
| an+3 |
∴
| 1 |
| an+1 |
| an+3 |
| an |
| 3 |
| an |
即
| 1 |
| an+1 |
| 1 |
| 2 |
| 3 |
| an |
| 3 |
| 2 |
| 1 |
| an |
| 1 |
| 2 |
则{
| 1 |
| an |
| 1 |
| 2 |
首项为
| 1 |
| a1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
则
| 1 |
| an |
| 1 |
| 2 |
| 3 |
| 2 |
即
| 1 |
| an |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3n-1 |
(2)bn=(3n-1)•
| n |
| 2n |
| n |
| 2n-1 |
则数列{bn}的前n项和Tn=
| 1 |
| 1 |
| 2 |
| 2 |
| 3 |
| 22 |
| n |
| 2n-1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 22 |
| 3 |
| 23 |
| n |
| 2n |
两式相减得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| n |
| 2n |
1-(
| ||
1-
|
| n |
| 2n |
| 1 |
| 2n-1 |
| n |
| 2n |
| n+2 |
| 2n |
则 Tn=4-
| n+2 |
| 2n-1 |
点评:本题主要考查等比数列的判断,以及数列的求和,利用错位相减法是解决本题的关键,考查学生的运算能力.
练习册系列答案
相关题目
已知命题p:?x∈R,lnx+x-2=0,命题q:?x∈R,2x≥x2,则下列命题中为真命题的是( )
| A、p∧q | B、¬p∧q |
| C、p∧¬q | D、¬p∧¬q |
若函数f(x)=
+
是奇函数,则a的值为( )
| 1 |
| 3x-1 |
| 1 |
| a |
| A、1 | B、2 | C、3 | D、4 |