题目内容

设f(x)是定义在R上的偶函数,且f(x)在[0,+∞)上是减函数.若f(m)>f(2),则实数m的取值范围是
 
考点:奇偶性与单调性的综合
专题:函数的性质及应用
分析:根据函数奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.
解答: 解:∵f(x)是定义在R上的偶函数,且f(x)在[0,+∞)上是减函数,
∴不等式f(m)>f(2),等价为f(|m|)>f(2),
即|m|<2,
解得-2<m<2,
故答案为:(-2,2);
点评:本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系,将不等式进行等价转化是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网