题目内容
已知定义在R上的函数y=f(x)满足下列三个条件:
①对于任意的x∈R都有f(x+6)=f(x);
②对于任意的0≤x1<x2≤3都有f(x1)<f(x2);
③函数y=f(x+3)的图象关于y轴对称.
则下列结论正确的是( )
①对于任意的x∈R都有f(x+6)=f(x);
②对于任意的0≤x1<x2≤3都有f(x1)<f(x2);
③函数y=f(x+3)的图象关于y轴对称.
则下列结论正确的是( )
| A、f(0.5)>f(13)>f(10) |
| B、f(10)>f(13)<f(0.5) |
| C、f(0.5)<f(13)<f(10) |
| D、f(13)<f(0.5)<f(10) |
考点:函数的图象
专题:函数的性质及应用
分析:先把函数的性质研究清楚,由三个条件知函数周期为6,其对称轴方程为x=3,在区间[0,3]上是增函数,观察四个选项发现自变量都不在已知的单调区间内故应用相关的性质将其值用区间[0,3]上的函数值表示出,以方便利用单调性比较大小.
解答:
解:由①②③三个条件知函数的周期是6,在区间[0,3]上是增函数且其对称轴为x=3
∴f(13)=f(12+1)=f(1),
f(10)=f(12-2)=f(-2)=f(2)
∵0<0.5<1<<2,函数y=f(x)在区间[0,3]上是增函数
∴f(0.5)<f(13)<f(10),
故选C.
∴f(13)=f(12+1)=f(1),
f(10)=f(12-2)=f(-2)=f(2)
∵0<0.5<1<<2,函数y=f(x)在区间[0,3]上是增函数
∴f(0.5)<f(13)<f(10),
故选C.
点评:本题主要考查了函数的周期性,以及利用函数的周期性、单调性、对称性进行比较函数值的大小,同时考查了转化的数学思想,属于中档题.
练习册系列答案
相关题目