题目内容
8.(I)求证:AE∥平面PCD
(II)证明:平面PCD⊥平面PBD.
分析 (Ⅰ)证明AD∥CE,且AD=CE,推出AE∥CD,然后证明AE∥平面 PCD;
(Ⅱ)连接DE,设AE交BD于O,连PO,证明AE⊥平面PBD,因为AE∥CD,所以CD⊥平面PBD,即可证明平面PCD⊥平面PBD.
解答 证明:
(Ⅰ)因为∠ABC=∠BAD=90°,BC=2AD,E 是BC的中点.
所以AD∥CE,且AD=CE
所以四边形ADCE是平行四边形,
所以AE∥CD,
AE?平面PCD,CD?平面PCD,
∴AE∥平面 PCD;
(Ⅱ)连接DE,设AE交BD于O,连PO,
则AEFD是正方形,所以AE⊥BD,
因为PD=PB=2,O是BD中点,所以PO⊥BD,
∵$\left\{\begin{array}{l}{OA=OB}\\{PA=PB}\\{PO=PO}\end{array}\right.$,∴△POA≌△PBD,∴∠POA=∠PBD=90°,
即AE⊥PO,
因为BD∩PO=O,所以AE⊥平面PBD,
因为AE∥CD,所以CD⊥平面PBD,
又CD?平面PCD,所以平面PCD⊥平面PBD.
点评 本题考查直线与平面平行的判定定理的应用,考查线面、面面垂直的证明,考查空间想象能力以及计算能力.
练习册系列答案
相关题目
19.执行如图的程序框图,则输出的S=( )

| A. | $\frac{\sqrt{3}}{2}$ | B. | $\sqrt{3}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | 0 |
16.
函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象如图所示,则下列有关f(x)性质的描述正确的是( )
| A. | φ=$\frac{2π}{3}$ | B. | x=$\frac{7π}{12}$+kπ,k∈Z为其所有对称轴 | ||
| C. | [$\frac{π}{12}$+$\frac{kπ}{2}$,$\frac{7π}{12}$+$\frac{kπ}{2}$],k∈Z为其减区间 | D. | f(x)向左移$\frac{π}{12}$可变为偶函数 |
3.
鹰潭市龙虎山花语世界位于中国第八处世界自然遗产,世界地质公元、国家自然文化双遗产地、国家AAAAA级旅游景区--龙虎山主景区排衙峰下,是一座独具现代园艺风格的花卉公园,园内汇集了3000余种花卉苗木,一年四季姹紫嫣红花香四溢.花园景观融合法、英、意、美、日、中六大经典园林风格,景观设计唯美新颖.玫瑰花园、香草花溪、台地花海、植物迷宫、儿童乐园等景点错落有致,交相呼应又自成一体,是世界园艺景观的大展示.该景区自2015年春建成试运行以来,每天游人如织,郁金香、向日葵、虞美人等赏花旺季日入园人数最高达万人.
某学校社团为了解进园旅客的具体情形以及采集旅客对园区的建议,特别在2017年4月1日赏花旺季对进园游客进行取样调查,从当日12000名游客中抽取100人进行统计分析,结果如下:(表一)
(1)完成表格一中的空位①-④,并在答题卡中补全频率分布直方图,并估计2017年4月1日当日接待游客中30岁以下人数.
(2)完成表格二,并问你能否有97.5%的把握认为在观花游客中“年龄达到50岁以上”与“性别”相关?
(3)按分层抽样(分50岁以上与50以下两层)抽取被调查的100位游客中的10人作为幸运游客免费领取龙虎山内部景区门票,再从这10人中选取2人接受电视台采访,设这2人中年龄在50岁以上(含)的人数为ξ,求ξ的分布列
(表二)
(参考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
某学校社团为了解进园旅客的具体情形以及采集旅客对园区的建议,特别在2017年4月1日赏花旺季对进园游客进行取样调查,从当日12000名游客中抽取100人进行统计分析,结果如下:(表一)
| 年龄 | 频数 | 频率 | 男 | 女 |
| [0,10) | 10 | 0.1 | 5 | 5 |
| [10,20) | ① | ② | ③ | ④ |
| [20,30) | 25 | 0.25 | 12 | 13 |
| [30,40) | 20 | 0.2 | 10 | 10 |
| [40,50) | 10 | 0.1 | 6 | 4 |
| [50,60) | 10 | 0.1 | 3 | 7 |
| [60,70) | 5 | 0.05 | 1 | 4 |
| [70,80) | 3 | 0.03 | 1 | 2 |
| [80,90) | 2 | 0.02 | 0 | 2 |
| 合计 | 100 | 1.00 | 45 | 55 |
(2)完成表格二,并问你能否有97.5%的把握认为在观花游客中“年龄达到50岁以上”与“性别”相关?
(3)按分层抽样(分50岁以上与50以下两层)抽取被调查的100位游客中的10人作为幸运游客免费领取龙虎山内部景区门票,再从这10人中选取2人接受电视台采访,设这2人中年龄在50岁以上(含)的人数为ξ,求ξ的分布列
(表二)
| 50岁以上 | 50岁以下 | 合计 | |
| 男生 | 5 | 40 | 45 |
| 女生 | 15 | 40 | 55 |
| 合计 | 20 | 80 | 100 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
13.某几何体的三视图如图所示,则这个几何体的体积为( )

| A. | $16-\frac{2π}{3}$ | B. | $8-\frac{4π}{3}$ | C. | $16-\frac{4π}{3}$ | D. | $16(1-\frac{π}{3})$ |
20.已知集合A={x∈N|($\frac{1}{2}$)x≤1},B={x|x2-2x-8≤0},则A∩B=( )
| A. | {x|0≤x≤4} | B. | {0,1,2,3} | C. | {0,1,2,3,4} | D. | {1,2,3,4} |
18.在[0,2π]上随机取一个数x,则事件“$cos(x+\frac{π}{3})+\sqrt{3}sin(x+\frac{π}{3})≥1$”发生的概率为( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{2}{3}$ |