题目内容

如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:
(1)直线PA∥平面DEF;
(2)平面BDE⊥平面ABC.
考点:平面与平面垂直的判定,直线与平面垂直的判定
专题:空间位置关系与距离,空间角,立体几何
分析:(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;
(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC即可.
解答: 证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,
又∵PA?平面DEF,DE?平面DEF,
∴PA∥平面DEF;
(2)∵D、E为PC、AC的中点,∴DE=
1
2
PA=3;
又∵E、F为AC、AB的中点,∴EF=
1
2
BC=4;
∴DE2+EF2=DF2
∴∠DEF=90°,
∴DE⊥EF;
∵DE∥PA,PA⊥AC,∴DE⊥AC;
∵AC∩EF=E,∴DE⊥平面ABC;
∵DE?平面BDE,∴平面BDE⊥平面ABC.
点评:本题考查了空间中的平行与垂直问题,解题时应明确空间中的线线、线面、面面之间的垂直与平行的互相转化关系,是基础题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网