题目内容
3.已知sin(3π+α)=2sin$({\frac{3π}{2}+α})$,求下列各式的值:(1)$\frac{2sinα-3cosα}{4sinα-9cosα}$;
(2)sin2α+sin 2α.
分析 利用诱导公式、同角三角函数的基本关系,求得tanα=-2,从而求得要求式子的值.
解答 解:∵sin(3π+α)=2sin$({\frac{3π}{2}+α})$,∴-sinα=-2cosα,∴tanα=-2,
∴(1)$\frac{2sinα-3cosα}{4sinα-9cosα}$=$\frac{2tanα-3}{4tanα-9}$=$\frac{-4-3}{-8-9}$=$\frac{7}{17}$;
(2)sin2α+sin 2α=$\frac{{sin}^{2}α+2sinαcosα}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{tan}^{2}α+2tanα}{{tan}^{2}α+1}$=$\frac{4-4}{4+1}$=0.
点评 本题主要考查同角三角函数的基本关系,二倍角公式的,以及三角函数在各个象限中的符号,属于基础题.
练习册系列答案
相关题目
13.若a>b>0,c>1,则( )
| A. | logac>logbc | B. | logca>logcb | C. | ac<bc | D. | ca<cb |
14.若平面α∥β,直线a⊆α,直线b⊆β,那么直线a,b的位置关系是( )
| A. | 相交 | B. | 平行 | C. | 异面 | D. | 平行或异面 |
11.给出下面四个命题(其中m,n,l为空间中不同的直线,α,β是空间中不同的平面)中正确的命题为( )
| A. | m∥n,n∥α⇒m∥α | B. | α⊥β,α∩β=m,l⊥m⇒l⊥β | ||
| C. | l⊥m,l⊥n,m?α,n?α⇒l⊥α | D. | m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β |
15.已知$sin2θ-4sin({θ+\frac{π}{3}})sin({θ-\frac{π}{6}})=\frac{{\sqrt{3}}}{3}$,则cos2θ等于( )
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $-\frac{{\sqrt{3}}}{6}$ | D. | $-\frac{{\sqrt{3}}}{3}$ |