ÌâÄ¿ÄÚÈÝ
13£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÓÒ½¹µãΪF£¨c£¬0£©£¬Ô²M£º£¨x-a£©2+y2=c2£¬Ë«ÇúÏßÒÔÍÖÔ²CµÄ½¹µãΪ¶¥µã£¬¶¥µãΪ½¹µã£¬ÈôË«ÇúÏßµÄÁ½Ìõ½¥½üÏß¶¼ÓëÔ²MÏàÇУ¬ÔòÍÖÔ²CµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©| A£® | $\frac{\sqrt{2}}{2}$ | B£® | $\frac{\sqrt{3}}{2}$ | C£® | $\frac{\sqrt{3}}{3}$ | D£® | $\frac{1}{2}$ |
·ÖÎö ÓÉÌâÒâ¿ÉÖª£ºË«ÇúÏß·½³ÌΪ£º$\frac{{x}^{2}}{{c}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¾0£¬b£¾0£©£¬½¥½üÏß·½³ÌΪy=¡À$\frac{b}{c}$x£¬Ô²ÐÄΪ£¨a£¬0£©£¬°ë¾¶Îªc£¬¼´d=$\frac{ØabØ}{\sqrt{{b}^{2}+{c}^{2}}}$=b£¬¼´b=c£¬a=$\sqrt{2}$c£¬ÍÖÔ²CµÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£®
½â´ð ½â£ºÓÉÌâÒâ¿ÉÖª£ºÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬½¹µãÔÚxÖáÉÏ£¬a2=b2+c2£¬
Ë«ÇúÏßÒÔÍÖÔ²CµÄ½¹µãΪ¶¥µã£¬¶¥µãΪ½¹µã£¬
Ë«ÇúÏß·½³ÌΪ£º$\frac{{x}^{2}}{{c}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¾0£¬b£¾0£©£¬½¥½üÏß·½³ÌΪy=¡À$\frac{b}{c}$x£¬
Ô²M£º£¨x-a£©2+y2=c2£¬Ô²ÐÄΪ£¨a£¬0£©£¬°ë¾¶Îªc£¬
Ë«ÇúÏßµÄÁ½Ìõ½¥½üÏß¶¼ÓëÔ²MÏàÇУ¬ÔòÔ²Ðĵ½½¥½üÏߵľàÀëd=c£¬
¼´d=$\frac{ØabØ}{\sqrt{{b}^{2}+{c}^{2}}}$=b£¬¼´b=c£¬a=$\sqrt{2}$c£¬
ÍÖÔ²CµÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬
¹ÊÑ¡A£®![]()
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éË«ÇúÏߵĽ¥½üÏß·½³Ì£¬µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÊýÐνáºÏ˼Ï룬ÊôÓÚÖеµÌ⣮
| ʵÑé²Ù×÷ | |||||
| ²»ºÏ¸ñ | ºÏ¸ñ | Á¼ºÃ | ÓÅÐã | ||
| Ìå ÄÜ ²â ÊÔ | ²»ºÏ¸ñ | 0 | 0 | 1 | 1 |
| ºÏ¸ñ | 0 | 2 | 1 | b | |
| Á¼ºÃ | 1 | a | 2 | 4 | |
| ÓÅÐã | 1 | 2 | 3 | 6 | |
£¨¢ñ£©ÊÔÈ·¶¨a¡¢bµÄÖµ£»
£¨¢ò£©´Ó30ÈËÖÐÈÎÒâ³éÈ¡3ÈË£¬ÉèʵÑé²Ù×÷¿¼ÊÔºÍÌåÄܲâÊԳɼ¨¶¼ÊÇÁ¼ºÃ»òÓÅÐãµÄѧÉúÈËÊýΪ¦Î£¬ÇóËæ»ú±äÁ¿¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍûE¦Î£®