题目内容
圆x2+y2-2x-5=0与圆x2+y2+2x-4y-4=0的交点为A,B,则线段AB的垂直平分线方程为 .
考点:圆与圆的位置关系及其判定
专题:直线与圆
分析:线段AB的垂直平分线经过两圆的圆心,将圆的方程化为标准方程,求得圆心坐标,即可得到线段AB的垂直平分线方程;x2+y2-4x-5=0与圆x2+y2-2x-4y-4=0
解答:
解:线段AB的垂直平分线经过两圆的圆心
∵圆x2+y2-2x-5=0可化为:(x-1)2+y2=6,圆x2+y2+2x-4y-4=0可化为:(x+1)2+(y-2)2=1
∴两圆的圆心分别为(1,0),(-1,2)
∴线段AB的垂直平分线方程为
=
,即x+y-1=0
故答案为:x+y-1=0.
∵圆x2+y2-2x-5=0可化为:(x-1)2+y2=6,圆x2+y2+2x-4y-4=0可化为:(x+1)2+(y-2)2=1
∴两圆的圆心分别为(1,0),(-1,2)
∴线段AB的垂直平分线方程为
| y-0 |
| 2-0 |
| x-1 |
| -1-1 |
故答案为:x+y-1=0.
点评:本题以两圆相交为载体,考查两圆公共弦的方程,考查两圆公共弦的垂直平分线的方程,考查圆中的弦长,有一定的综合性.
练习册系列答案
相关题目
函数y=sinωx(ω>0)在区间[0,1]上至少出现50个最小值,则ω的最小值是( )
| A、98π | B、98.5π |
| C、99.5π | D、100π |