题目内容
9.设集合A={x|x2+x-2<0},B={-1,0,3},则A∩B=( )| A. | {-1,0} | B. | {0,3} | C. | {-1,3} | D. | {-1,0,3} |
分析 求出A中不等式的解集确定出A,找出A与B的交集即可.
解答 解:由A中不等式变形得:(x-1)(x+2)<0,
解得:-2<x<1,即A=(-2,1),
∵B={-1,0,3},
∴A∩B={-1,0}.
故选:A.
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
19.已知数列{an}的前n项和为Sn,满足nSn+1-(n+1)Sn=2n2+2n(n∈N*),a1=3,则数列{an}的通项an=( )
| A. | 4n-1 | B. | 2n+1 | C. | 3n | D. | n+2 |
20.已知tanα=2,α为第一象限角,则sin2α+cosα的值为( )
| A. | $\sqrt{5}$ | B. | $\frac{{4+2\sqrt{5}}}{5}$ | C. | $\frac{{4+\sqrt{5}}}{5}$ | D. | $\frac{{\sqrt{5}-2}}{5}$ |
17.(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1)+1=( )
| A. | x5 | B. | (x-1)5-1 | C. | x5+1 | D. | 1 |
14.命题“?x0∈R,f(x0)≥2或f(x0)≤1”的否定形式是( )
| A. | ?x∈R,1<f(x)<2 | B. | ?x0∈R,1<f(x0)<2 | ||
| C. | ?x∈R,f(x)≥2或f(x)≤1 | D. | ?x0∈R,f(x0)≥2或f(x0)>1 |
1.若直线x+my-1=0与不等式组$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y+2≤0}\\{x≥-1}\end{array}\right.$,表示的平面区域有公共点,则实数m的取值范围是( )
| A. | [$\frac{1}{2}$,2] | B. | [$\frac{1}{3}$,3] | C. | (-∞,$\frac{1}{3}$]∪[3,+∞) | D. | (-∞,$\frac{1}{2}$]∪[2,+∞) |
19.若f(tanx)=sin2x,则f(-1)的值是( )
| A. | -sin2 | B. | -1 | C. | $\frac{1}{2}$ | D. | 1 |