题目内容
已知数列{an}中,a1=3,前n项和Sn=
(n+1)(an+1)-1.
(Ⅰ)设数列{bn}满足bn=
,求bn+1与bn之间的递推关系式;
(Ⅱ)求数列{an}的通项公式.
| 1 |
| 2 |
(Ⅰ)设数列{bn}满足bn=
| an |
| n |
(Ⅱ)求数列{an}的通项公式.
考点:数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由Sn=
(n+1)(an+1)-1,得Sn+1=
(n+2)(an+1+1)-1.从而得nan+1=(n+1)an-1,由此能求出bn+1=bn-
.
(Ⅱ)由(Ⅰ)知
=
-
,由此利用累加法能求出an=2n+1.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n(n+1) |
(Ⅱ)由(Ⅰ)知
| an+1 |
| n+1 |
| an |
| n |
| 1 |
| n(n+1) |
解答:
解:(Ⅰ)∵Sn=
(n+1)(an+1)-1,∴Sn+1=
(n+2)(an+1+1)-1.
∴an+1=Sn+1-Sn=
[(n+2)(an+1+1)-(n+1)(an+1)],(4分)
整理得nan+1=(n+1)an-1,
等式两边同时除以n(n+1),得
=
-
,(7分)
即bn+1=bn-
.(8分)
(Ⅱ)由(Ⅰ)知bn+1=bn-
,即
=
-
,
所以
=
-
+
-
+…+
-
+
=
-
+
-
+
-
+…+
-1+3
=
+2,
得an=2n+1.(14分)
| 1 |
| 2 |
| 1 |
| 2 |
∴an+1=Sn+1-Sn=
| 1 |
| 2 |
整理得nan+1=(n+1)an-1,
等式两边同时除以n(n+1),得
| an+1 |
| n+1 |
| an |
| n |
| 1 |
| n(n+1) |
即bn+1=bn-
| 1 |
| n(n+1) |
(Ⅱ)由(Ⅰ)知bn+1=bn-
| 1 |
| n(n+1) |
| an+1 |
| n+1 |
| an |
| n |
| 1 |
| n(n+1) |
所以
| an |
| n |
| an |
| n |
| an-1 |
| n-1 |
| an-1 |
| n-1 |
| an-2 |
| n-1 |
| a2 |
| 2 |
| a1 |
| 1 |
| a1 |
| 1 |
=
| 1 |
| n |
| 1 |
| n-1 |
| 1 |
| n-1 |
| 1 |
| n-2 |
| 1 |
| n-2 |
| 1 |
| n-3 |
| 1 |
| 2 |
=
| 1 |
| n |
得an=2n+1.(14分)
点评:本题考查bn+1与bn之间的递推关系式的求法,考查数列{an}的通项公式的求法,解题时要认真审题,注意累加法的合理运用.
练习册系列答案
相关题目
已知定义在[0,+∞)上的函数f(x)满足f(x+2)=
f(x),当x∈[0,2)时,f(x)=-x2+2x,设f(x)在[2n-2,2n)上的最大值为an,数列{an}的前n项之和为Sn,则
Sn=( )
| 1 |
| 3 |
| lim |
| n→∞ |
| A、3 | ||
B、
| ||
C、
| ||
| D、2 |
若α为第三象限角,则
+
的值为( )
| cosα | ||
|
| sinα | ||
|
| A、2 | B、-2 | C、1 | D、-1 |