ÌâÄ¿ÄÚÈÝ
ÒÑÖªÍÖÔ²CµÄ·½³ÌΪ
+
=1£¬Ö±Ïßl0£ºx=4£¬AÊÇÍÖÔ²CµÄÓÒ¶¥µã£¬µãP£¨x1£¬y1£©ÊÇÍÖÔ²ÉÏÒìÓÚ×ó£¬ÓÒ¶¥µãµÄÒ»¸ö¶¯µã£¬Ö±ÏßPAÓël0½»ÓÚµãM1£¬Ö±Ïßl¹ýµãPÇÒÓëÍÖÔ²½»ÓÚÁíÒ»µãB£¨x2£¬y2£©£¬Óël0½»ÓÚµãM2£¬
£¨1£©ÈôÖ±Ïßl¾¹ýÍÖÔ²µÄ×ó½¹µãF£¬ÇÒʹµÃ
•
=3£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨2£©ÈôµãBǡΪÍÖÔ²µÄ×󶥵㣬ͬxÖáÉÏÊÇ·ñ´æÔÚ¶¨µãD£¬Ê¹µÃ±ä»¯µÄµãP£¬ÒÔM1M2Ϊֱ¾¶µÄÔ²×ܾ¹ýµãD£¬Èô´æÔÚ£¬ÇóÕâÑùµÄÔ²Ãæ»ýµÄ×îСֵ£»Èô²»´æÔÚ£»Çë˵Ã÷ÀíÓÉ£®
| x2 |
| 4 |
| y2 |
| 3 |
£¨1£©ÈôÖ±Ïßl¾¹ýÍÖÔ²µÄ×ó½¹µãF£¬ÇÒʹµÃ
| AP |
| AB |
£¨2£©ÈôµãBǡΪÍÖÔ²µÄ×󶥵㣬ͬxÖáÉÏÊÇ·ñ´æÔÚ¶¨µãD£¬Ê¹µÃ±ä»¯µÄµãP£¬ÒÔM1M2Ϊֱ¾¶µÄÔ²×ܾ¹ýµãD£¬Èô´æÔÚ£¬ÇóÕâÑùµÄÔ²Ãæ»ýµÄ×îСֵ£»Èô²»´æÔÚ£»Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÍÖÔ²µÄ¼òµ¥ÐÔÖÊ
רÌ⣺¼ÆËãÌâ,Ö±ÏßÓëÔ²,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨1£©ÉèPB·½³ÌΪy=k£¨x+1£©£¨k¡Ù0£©´úÈëÍÖÔ²·½³Ì£¬µÃ£¨3+4k2£©x2+8k2x+4k2-12=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí½áºÏÒÑÖªÌõ¼þ£¬½áºÏÏòÁ¿µÄÊýÁ¿»ý×ø±ê±íʾ±íʾ£¬ÄÜÇó³öÖ±ÏßlµÄ·½³Ì£»
£¨2£©¼ÙÉè´æÔÚxÖáÉ϶¨µãD£¬Ê¹µÃÒÔM1M2Ϊֱ¾¶µÄÔ²ºã¹ýµãD£¬Éè³öDµÄ×ø±ê£¬Çó³öAPºÍPBµÄ·½³Ì£¬È¡x=4µÃµ½
M1£¬M2µÄ×ø±ê£¬Ð´³öÏòÁ¿
ºÍ
µÄ×ø±ê£¬ÓÉÊýÁ¿»ýµÈÓÚ0ÁÐʽÇó³öDµÄ×ø±ê£®
£¨2£©¼ÙÉè´æÔÚxÖáÉ϶¨µãD£¬Ê¹µÃÒÔM1M2Ϊֱ¾¶µÄÔ²ºã¹ýµãD£¬Éè³öDµÄ×ø±ê£¬Çó³öAPºÍPBµÄ·½³Ì£¬È¡x=4µÃµ½
M1£¬M2µÄ×ø±ê£¬Ð´³öÏòÁ¿
| DM1 |
| DM2 |
½â´ð£º
£¨1£©½â£ºÓÉÓÚÖ±ÏßPBµÄбÂÊ´æÔÚ£¬ÉèPB·½³ÌΪy=k£¨x+1£©£¨k¡Ù0£©
´úÈëÍÖÔ²µÄ·½³Ì
+
=1£¬µÃ£¨3+4k2£©x2+8k2x+4k2-12=0£¬
ÓÉP£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
µÃx1+x2=-
£¬x1x2=
£¬
y1y2=k2£¨x1+1£©£¨x2+1£©=k2£¨x1x2+x1+x2+1£©=
£¬
•
=£¨x1-2£©£¨x2-2£©+y1y2=x1x2-2£¨x1+x2£©+4+y1y2
=
=3£¬
½âµÃ£¬k=¡À
£¬
¹ÊÖ±ÏßlµÄ·½³ÌΪy=¡À
£¨x+1£©£»
£¨2£©¼ÙÉè´æÔÚxÖáÉ϶¨µãD£¬Ê¹µÃÒÔM1M2Ϊֱ¾¶µÄÔ²ºã¹ýµãD£®
ÉèP£¨x1£¬y1£©£¬D£¨m£¬0£©£¬
Ôò
+
=1£¬µÃ12y12=36-9x12£®kAP=
£¬kBP=
£¬
ÍÖÔ²ÓÒ×¼ÏßΪx=4£®
ËùÒÔAP·½³ÌΪ£ºy=
£¨x-2£©£¬ÔòM1£¨4£¬
£©£¬
PB·½³ÌΪ£ºy=
£¨x+2£©£¬ÔòM2£¨4£¬
£©£®
Ôò
=£¨4-m£¬
£©£¬
=£¨4-m£¬
£©£®
ÓÉÒÔM1M2Ϊֱ¾¶µÄÔ²×ܾ¹ýµãD£¬µÃ
•
=0£¬
¼´ÓУ¨4-m£©2+
=0£¬
¼´£¨4-m£©2=9£¬½âµÃm=1»òm=7£®
ËùÒÔ´æÔÚxÖáÉ϶¨µãD£¨1£¬0£©»ò£¨7£¬0£©£¬Ê¹µÃÒÔM1M2Ϊֱ¾¶µÄÔ²ºã¹ýµãD£®
´úÈëÍÖÔ²µÄ·½³Ì
| x2 |
| 4 |
| y2 |
| 3 |
ÓÉP£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
µÃx1+x2=-
| 8k2 |
| 3+4k2 |
| 4k2-12 |
| 3+4k2 |
y1y2=k2£¨x1+1£©£¨x2+1£©=k2£¨x1x2+x1+x2+1£©=
| -9k2 |
| 3+4k2 |
| AP |
| AB |
=
| 27k2 |
| 3+4k2 |
½âµÃ£¬k=¡À
| ||
| 5 |
¹ÊÖ±ÏßlµÄ·½³ÌΪy=¡À
| ||
| 5 |
£¨2£©¼ÙÉè´æÔÚxÖáÉ϶¨µãD£¬Ê¹µÃÒÔM1M2Ϊֱ¾¶µÄÔ²ºã¹ýµãD£®
ÉèP£¨x1£¬y1£©£¬D£¨m£¬0£©£¬
Ôò
| x12 |
| 4 |
| y12 |
| 3 |
| y1 |
| x1-2 |
| y1 |
| x1+2 |
ÍÖÔ²ÓÒ×¼ÏßΪx=4£®
ËùÒÔAP·½³ÌΪ£ºy=
| y1 |
| x1-2 |
| 2y1 |
| x1-2 |
PB·½³ÌΪ£ºy=
| y1 |
| x1+2 |
| 6y1 |
| x1+2 |
Ôò
| DM1 |
| 2y1 |
| x1-2 |
| DM2 |
| 6y1 |
| x1+2 |
ÓÉÒÔM1M2Ϊֱ¾¶µÄÔ²×ܾ¹ýµãD£¬µÃ
| DM1 |
| DM2 |
¼´ÓУ¨4-m£©2+
| 12y12 |
| x12-4 |
¼´£¨4-m£©2=9£¬½âµÃm=1»òm=7£®
ËùÒÔ´æÔÚxÖáÉ϶¨µãD£¨1£¬0£©»ò£¨7£¬0£©£¬Ê¹µÃÒÔM1M2Ϊֱ¾¶µÄÔ²ºã¹ýµãD£®
µãÆÀ£º±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³ÌºÍÐÔÖÊ£¬¿¼²éÁËÖ±ÏߺÍÍÖÔ²µÄλÖùØÏµ£¬ÑµÁ·ÁËÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÅжÏÁ½¸öÏòÁ¿µÄ´¹Ö±£¬¿¼²éÁËѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊÇÓÐÒ»¶¨ÄѶÈÌâÄ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿