ÌâÄ¿ÄÚÈÝ
15£®·ÖÎö ¸ù¾Ý׿•œÔÀí£¬¿ÉµÃͼ1µÄÃæ»ý=¾ØÐεÄÃæ»ý£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º¸ù¾Ý׿•œÔÀí£¬¿ÉµÃͼ1µÄÃæ»ýΪ4¡Á2=8£®
¹Ê´ð°¸Îª8£®
µãÆÀ ´ËÌ⿼²éÁ˾ØÐεÄÃæ»ý¹«Ê½£¬»¹¿¼²éÁËѧÉú¿Õ¼äµÄÏëÏóÄÜÁ¦¼°¼ÆËã¼¼ÄÜ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
11£®Éèa=lg$\frac{2}{3}$£¬b=lg$\frac{2}{5}$£¬c=lg$\frac{3}{2}$£¬Ôò£¨¡¡¡¡£©
| A£® | a£¾c£¾b | B£® | b£¾c£¾a | C£® | c£¾b£¾a | D£® | c£¾a£¾b |
3£®ÒÑÖª¼¯ºÏA={x|£¨x-1£©£¨3-x£©£¼0}£¬B={x|-2¡Üx¡Ü2}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
| A£® | [-2£¬1£© | B£® | £¨1£¬2] | C£® | [-2£¬-1£© | D£® | £¨-1£¬2] |
7£®ÏÂÁÐÔËËãÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | x3•x2=x5 | B£® | x+x2=x3 | C£® | 2x3¡Âx2=x | D£® | £¨$\frac{x}{2}$£©3=$\frac{{x}^{3}}{2}$ |
4£®´ÓijʵÑé°à45ÃûͬѧÖÐËæ»ú³éÈ¡5Ãûͬѧ²Î¼Ó¡°ÌôÕ½±¡±¾ºÈü£¬ÓÃËæ»úÊý·¨È·¶¨Õâ5Ãûͬѧ£¬ÏÖ½«Ëæ»úÊý±íժ¼²¿·ÖÈçÏ£º
´ÓËæ»úÊý±íµÚÒ»ÐеĵÚ5Áк͵Ú6ÁÐÊý×Ö¿ªÊ¼ÓÉ×óµ½ÓÒÒÀ´ÎѡȡÁ½¸öÊý×Ö£¬ÔòÑ¡³öµÄµÚ5¸öͬѧµÄ±àºÅΪ£¨¡¡¡¡£©
| 16 | 22 | 77 | 94 | 39 | 49 | 54 | 43 | 54 | 82 | 17 | 37 | 93 | 23 | 78 | 87 | 35 | 20 | 96 | 43 |
| 84 | 42 | 17 | 53 | 31 | 57 | 24 | 55 | 06 | 88 | 77 | 04 | 74 | 47 | 67 | 21 | 76 | 33 | 50 | 25 |
| A£® | 23 | B£® | 37 | C£® | 35 | D£® | 17 |
5£®ÒÑÖªF1£¬F2·Ö±ðÊÇË«ÇúÏßC£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×ó£¬ÓÒ½¹µã£¬GÊÇË«ÇúÏßCÉÏÒ»µã£¬ÇÒÂú×ã|GF1|-7|GF2|=0£¬ÔòC¾¹ýµÚÒ»ÏóÏ޵Ľ¥½üÏßµÄбÂʵÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | £¨0£¬$\frac{\sqrt{7}}{3}$] | B£® | £¨0£¬$\frac{\sqrt{5}}{2}$] | C£® | £¨$\sqrt{2}$£¬$\frac{5}{3}$] | D£® | £¨$\sqrt{2}$£¬$\frac{\sqrt{13}}{3}$] |