题目内容

3.已知函数f(x)(x∈R)的图象上任一点(x0,y0)处的切线方程为y-y0=(x0-2)(x02-1)(x-x0),那么函数f(x)的单调递减区间是(  )
A.[-1,+∞)B.(-∞,2]C.(-∞,-1)和(1,2)D.[2,+∞)

分析 由切线方程y-y0=(x0-2)(x02-1)(x-x0),可知任一点的导数为f′(x)=(x-2)(x2-1),然后由f′(x)<0,可求单调递减区间.

解答 解:因为函数f(x),(x∈R)上任一点(x0y0)的切线方程为y-y0=(x0-2)(x02-1)(x-x0),
即函数在任一点(x0y0)的切线斜率为k=(x0-2)(x02-1),
即知任一点的导数为f′(x)=(x-2)(x2-1).
由f′(x)=(x-2)(x2-1)<0,得x<-1或1<x<2,
即函数f(x)的单调递减区间是(-∞,-1)和(1,2).
故选C.

点评 本题的考点是利用导数研究函数的单调性,先由切线方程得到切线斜率,进而得到函数的导数,然后解导数不等式,是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网