题目内容

14.已知函数f(x)=x3-3x.
(Ⅰ)若曲线y=f(x)与直线y=m有且只有一个公共点,求m的取值范围;
(Ⅱ)过点P(2,-6)作曲线y=f(x)的切线,求此切线的方程.

分析 (Ⅰ)先求出其导函数,利用其导函数求出其极值,求出m的范围即可;
(II)先根据解析式设出切点坐标,利用点斜式和f′(x)求出切线方程,再把点P(2,-6)代入切线方程,求出切点的横坐标x0,再代入切线方程化简即可.

解答 解:(Ⅰ)令f′(x)=3x2-3=0,得x=±1,
可求得f(x)的极大值为f(-1)=2,极小值为f(1)=-2,
故当满足-2<m<2时,恰有三个不同公共点.
(II)∵f(x)=x3-3x,∴设切点为Q(x0,x03-3x0),
则所求切线方程为:y-(x03-3x0)=(3x02-3)(x-x0)①,
∵切线过点P(2,-6),∴-6-(x03-3x0)=(3x02-3)(2-x0),
解得x0=0或x0=3,代入①化简得y=-3x或y+6=24(x-2),
∴切线方程为3x+y=0或24x-y-54=0.

点评 本题考查了导数的几何意义,以及切点在曲线和切线上的应用,注意“在某点处的切线”和“过某点处的切线”的区别和求法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网