题目内容

13.在△ABC中,∠A,∠B,∠C所对的边分别是a,b,c.当钝角△ABC的三边a,b,c是三个连续整数时,则△ABC外接圆的半径为$\frac{{8\sqrt{15}}}{15}$.

分析 由题意设出钝角三角形的三边长分别为x,x+1,x+2,可得出x+2所对的角为钝角,设为α,利用余弦定理表示出cosα,将设出的三边代入,根据cosα小于0,得出x的范围,在范围中找出整数x的值,确定出三角形的三边长,进而确定出cosα的值,利用同角三角函数间的基本关系求出sinα的值,利用正弦定理即可求出三角形ABC外接圆的半径.

解答 解:由题意得:钝角△ABC的三边分别为x,x+1,x+2,且x+2所对的角为钝角α,
∴由余弦定理得:cosα=$\frac{{x}^{2}+(x+1)^{2}-(x+2)^{2}}{2x(x+1)}$=$\frac{x-3}{2x}$<0,即x<3,
∴x=1或x=2,
当x=1时,三角形三边分别为1,2,3,不能构成三角形,舍去;
当x=2时,三角形三边长分别为2,3,4,此时cosα=-$\frac{1}{4}$,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{\sqrt{15}}{4}$,
设△ABC外接圆的半径为R,根据正弦定理得:$\frac{4}{\frac{\sqrt{15}}{4}}$=2R,
解得:R=$\frac{{8\sqrt{15}}}{15}$.
故答案为:$\frac{{8\sqrt{15}}}{15}$.

点评 此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握正弦、余弦定理是解本题的关键,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网