题目内容
6.已知函数f(x)=lnx,g(x)=-$\frac{a}{x}$(a>0),若?x∈(0,e],都有f(x)≥g(x)+$\frac{3}{2}$,求实数a的取值范围.分析 把?x∈(0,e],都有f(x)≥g(x)+$\frac{3}{2}$,转化为?x∈(0,e],有$a≥\frac{3}{2}x-xlnx$.设h(x)=$\frac{3}{2}x-xlnx$,x∈(0,e],利用导数求其最大值得答案.
解答 解:f(x)≥g(x)+$\frac{3}{2}$,即lnx≥$-\frac{a}{x}$+$\frac{3}{2}$,
也就是$\frac{a}{x}≥\frac{3}{2}-lnx$,
∵x∈(0,e],∴$a≥\frac{3}{2}x-xlnx$.
设h(x)=$\frac{3}{2}x-xlnx$,x∈(0,e],
则h′(x)=$\frac{3}{2}-lnx-1=\frac{1}{2}-lnx$,
令h′(x)=0,得$\frac{1}{2}-lnx=0$,即x=$\sqrt{e}$.
∴当x∈(0,$\sqrt{e}$)时,h′(x)>0,h(x)单调递增;
当x∈($\sqrt{e}$,e]时,h′(x)<0,h(x)单调递减.
∴$h(x)_{max}=h(\sqrt{e})=\frac{3}{2}\sqrt{e}-\frac{\sqrt{e}}{2}=\sqrt{e}$.
∴a$≥\sqrt{e}$.
点评 本题考查利用导数求函数在闭区间上的最值,考查分离参数法,属中档题.
练习册系列答案
相关题目
10.已知$tan(α+β)=\frac{1}{2},tanβ=\frac{1}{3}$,则$tan(α-\frac{π}{4})$=( )
| A. | $\frac{3}{4}$ | B. | $-\frac{3}{4}$ | C. | $\frac{1}{7}$ | D. | $\frac{6}{7}$ |
11.已知程序框图如图所示,当输入x=2时,输出结果为( )

| A. | 9 | B. | 10 | C. | 11 | D. | 12 |
11.四棱锥P-ABCD的底面为矩形,且PA⊥平面ABCD,AB=AD=$\frac{1}{2}$AP=2,E为侧棱PC的中点,则异面直线AE与PD所成角的余弦值为( )
| A. | $\frac{{\sqrt{30}}}{10}$ | B. | $-\frac{{\sqrt{30}}}{10}$ | C. | $\frac{{\sqrt{30}}}{5}$ | D. | $-\frac{{\sqrt{30}}}{5}$ |
15.已知直线l过点(-1,0),l与圆C:(x-1)2+y2=3相交于A,B两点,则弦长$|AB|≥2\sqrt{2}$的概率为( )
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
16.设f(x)是定义在R上的偶函数,f(x)=-f(x+1),当x∈[0,1]时,f(x)=x+2,则当x∈[-2,0]时,f(x)=( )
| A. | f(x)=x+4 | B. | f(x)=2+|x+1| | C. | f(x)=2-x | D. | f(x)=3-|x+1| |