题目内容

3.已知{an}数列的首项为a1,满足${a_n}+{a_{n-1}}=n•{(-1)^{\frac{n(n+1)}{2}}}(n∈N,n≥2)$,S2017=-1006-b,且a1b>0,则$\frac{1}{a_1}+\frac{4}{b}$的最小值为$\frac{9}{2}$.

分析 ${a_n}+{a_{n-1}}=n•{(-1)^{\frac{n(n+1)}{2}}}(n∈N,n≥2)$,可得a2k+a2k+1=(2k+1)•(-1)(2k+1)(k+1)=(2k+1)•(-1)k+1.于是S2017=a1+3-5+7-9+…+2015-2017=a1-1008=-1006-b,可得a1+b=2.且a1b>0,再利用基本不等式的性质即可得出.

解答 解:∵${a_n}+{a_{n-1}}=n•{(-1)^{\frac{n(n+1)}{2}}}(n∈N,n≥2)$,
∴a2k+a2k+1=(2k+1)•(-1)(2k+1)(k+1)=(2k+1)•(-1)k+1
∴S2017=a1+3-5+7-9+…+2015-2017=a1-2×504=a1-1008=-1006-b,
∴a1+b=2.且a1b>0,
则$\frac{1}{a_1}+\frac{4}{b}$=$\frac{1}{2}({a}_{1}+b)$$(\frac{1}{{a}_{1}}+\frac{4}{b})$=$\frac{1}{2}(5+\frac{b}{{a}_{1}}+\frac{4{a}_{1}}{b})$≥$\frac{1}{2}(5+2\sqrt{4})$=$\frac{9}{2}$,当且仅当b=2a1=$\frac{4}{3}$时取等号.
故答案为:$\frac{9}{2}$.

点评 本题考查了数列递推关系、分组求和、基本不等式性质、转化方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网