ÌâÄ¿ÄÚÈÝ
3£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{-x+1£¬}&{x£¼1}\\{{2}^{x}-2£¬}&{x¡Ý1}\end{array}\right.$£¬g£¨x£©=$\frac{1}{x}$£¬Èô¶ÔÈÎÒâx¡Ê[m£¬+¡Þ£©£¨m£¾0£©£¬×Ü´æÔÚÁ½¸öx0¡Ê[0£¬2]£¬Ê¹µÃf£¨x0£©=g£¨x£©£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©| A£® | [1£¬+¡Þ£© | B£® | £¨0£¬1] | C£® | [$\frac{1}{2}$£¬+¡Þ£© | D£® | £¨0£¬$\frac{1}{2}$] |
·ÖÎö Óɷֶκ¯Êý½âÎöʽ¿ÉµÃº¯Êýf£¨x£©ÔÚÇø¼ä[0£¬2]ÉÏÂú×ãÒ»¸öº¯ÊýÖµ¶ÔÓ¦Á½¸ö×Ô±äÁ¿µÄº¯ÊýÖµµÄ¼¯ºÏA£¬Çó³öº¯Êýg£¨x£©ÔÚ[m£¬+¡Þ£©£¨m£¾0£©ÉϵÄÖµÓòB£¬ÓÉBÊÇAµÄ×Ó¼¯Çó½â£®
½â´ð ½â£ºf£¨x£©=$\left\{\begin{array}{l}{-x+1£¬}&{x£¼1}\\{{2}^{x}-2£¬}&{x¡Ý1}\end{array}\right.$£¬
µ±x¡Ê[0£¬1£©Ê±£¬f£¨x£©¡Ê[1£¬0£©£¬µ±x¡Ê[1£¬2]ʱ£¬f£¨x£©¡Ê[0£¬2]£®
¡àÒ»¸öº¯ÊýÖµ¶ÔÓ¦Á½¸ö×Ô±äÁ¿µÄº¯ÊýÖµµÄ·¶Î§Îª£¨0£¬1]£®
g£¨x£©=$\frac{1}{x}$ÔÚ[m£¬+¡Þ£©£¨m£¾0£©ÉÏΪ¼õº¯Êý£¬×î´óֵΪ$\frac{1}{m}$£®
¡àg£¨x£©µÄÖµÓòΪ[0£¬$\frac{1}{m}$]£®
Ҫʹ¶ÔÈÎÒâx¡Ê[m£¬+¡Þ£©£¨m£¾0£©£¬×Ü´æÔÚÁ½¸öx0¡Ê[0£¬2]£¬Ê¹µÃf£¨x0£©=g£¨x£©£¬
Ôò$\frac{1}{m}¡Ü1$£¬¼´m¡Ý1£®
¡àʵÊýmµÄȡֵ·¶Î§ÊÇ[1£¬+¡Þ£©£®
¹ÊÑ¡£ºA£®
µãÆÀ ±¾Ì⿼²é·Ö¶Îº¯ÊýµÄÓ¦Ó㬹ؼüÊǶÔÌâÒâµÄÀí½â£¬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
13£®ÒÑÖª£¨x-2£©6=a0+a1£¨x-1£©+a2£¨x-1£©2+¡+a6£¨x-1£©6£¬Ôòa3=£¨¡¡¡¡£©
| A£® | 15 | B£® | -15 | C£® | 20 | D£® | -20 |
18£®ÒÑÖªx£¾y£¾0£¬Ôò£¨¡¡¡¡£©
| A£® | $\frac{1}{x}-\frac{1}{y}£¾0$ | B£® | sinx-siny£¾0 | C£® | ${£¨{\frac{1}{2}}£©^x}-{£¨{\frac{1}{2}}£©^y}£¼0$ | D£® | lnx+lny£¾0 |
12£®Ä³¹¤³ÌÉ豸×âÁÞ¹«Ë¾ÎªÁ˵÷²éA£¬BÁ½ÖÖÍÚ¾ò»úµÄ³ö×âÇé¿ö£¬ÏÖËæ»ú³éÈ¡ÁËÕâÁ½ÖÖÍÚ¾ò»ú¸÷100̨£¬·Ö±ðͳ¼ÆÁËÿ̨ÍÚ¾ò»úÔÚÒ»¸öÐÇÆÚÄڵijö×âÌìÊý£¬Í³¼ÆÊý¾ÝÈçÏÂ±í£º
AÐͳµÍÚ¾ò»ú
BÐͳµÍÚ¾ò»ú
£¨¢ñ£©¸ù¾ÝÕâ¸öÐÇÆÚµÄͳ¼ÆÊý¾Ý£¬½«ÆµÂÊÊÓΪ¸ÅÂÊ£¬Çó¸Ã¹«Ë¾Ò»Ì¨AÐÍÍÚ¾ò»ú£¬Ò»Ì¨BÐÍÍÚ¾ò»úÒ»ÖÜÄںϼƳö×âÌìÊýÇ¡ºÃΪ4ÌìµÄ¸ÅÂÊ£»
£¨¢ò£©Èç¹ûA£¬BÁ½ÖÖÍÚ¾ò»úÿ̨ÿÌì³ö×â»ñµÃµÄÀûÈóÏàͬ£¬¸Ã¹«Ë¾ÐèÒª´ÓA£¬BÁ½ÖÖÍÚ¾ò»úÖйºÂòһ̨£¬ÇëÄã¸ù¾ÝËùѧµÄͳ¼ÆÖªÊ¶£¬¸ø³ö½¨ÒéÓ¦¸Ã¹ºÂòÄÄÒ»ÖÖÀàÐÍ£¬²¢ËµÃ÷ÄãµÄÀíÓÉ£®
AÐͳµÍÚ¾ò»ú
| ³ö×âÌìÊý | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| ³µÁ¾Êý | 5 | 10 | 30 | 35 | 15 | 3 | 2 |
| ³ö×âÌìÊý | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| ³µÁ¾Êý | 14 | 20 | 20 | 16 | 15 | 10 | 5 |
£¨¢ò£©Èç¹ûA£¬BÁ½ÖÖÍÚ¾ò»úÿ̨ÿÌì³ö×â»ñµÃµÄÀûÈóÏàͬ£¬¸Ã¹«Ë¾ÐèÒª´ÓA£¬BÁ½ÖÖÍÚ¾ò»úÖйºÂòһ̨£¬ÇëÄã¸ù¾ÝËùѧµÄͳ¼ÆÖªÊ¶£¬¸ø³ö½¨ÒéÓ¦¸Ã¹ºÂòÄÄÒ»ÖÖÀàÐÍ£¬²¢ËµÃ÷ÄãµÄÀíÓÉ£®