题目内容

14.已知函数f(x)=|2x-1|-|x-3|.
(Ⅰ)解不等式f(x)≥1;
(Ⅱ)当-9≤x≤4时,不等式f(x)<a成立,求实数a的取值范围.

分析 (Ⅰ)通讨论x的范围,得到关于x的不等式组,解出即可;(Ⅱ)通过讨论x的范围,求出各个区间上的f(x)的最大值,求出a的范围即可.

解答 解:(Ⅰ)∵|2x-1|-|x-3|≥1,
∴$\left\{\begin{array}{l}{x≥3}\\{2x-1-x+3≥1}\end{array}\right.$或$\left\{\begin{array}{l}{\frac{1}{2}<x<3}\\{2x-1+x-3≥1}\end{array}\right.$或$\left\{\begin{array}{l}{x≤\frac{1}{2}}\\{1-2x+x-3≥1}\end{array}\right.$,
解得:x≥$\frac{5}{3}$或x≤-3,
故不等式的解集是:$(-∞,-3]∪[\frac{5}{3},+∞)$.
(Ⅱ)f(x)=|2x-1|-|x-3|,
x≥3时,f(x)=x+2,f(x)的最大值是f(4)=5,
$\frac{1}{2}$≤x≤3时,f(x)=3x-4,f(x)的最大值是f(3)=5,
-9≤x≤$\frac{1}{2}$时,f(x)=-x-2,f(x)的最大值是f(-9)=7,
当-9≤x≤4时,不等式f(x)<a成立,
则a>7,
即a∈(7,+∞).

点评 本题考查了解绝对值不等式问题,考查分类讨论思想,转化思想,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网