题目内容

15.对于函数f(x),若在其定义域内存在两个实数a,b(a<b),当x∈[a,b]时,f(x)的值域也是[a,b],则称函数f(x)为“Kobe函数”.若函数f(x)=k+$\sqrt{x-1}$是“Kobe函数”,则实数k的取值范围是(  )
A.[-1,0]B.[1,+∞)C.$[{-1,-\frac{3}{4}})$D.$({\frac{3}{4},1}]$

分析 根据新定义,当x∈[a,b]时,f(x)的值域也是[a,b],可知函数f(x)是增函数,其图象与y=x有两个不同的交点.即可求解.

解答 解:由题意,当x∈[a,b]时,f(x)的值域也是[a,b],可知函数f(x)是增函数,其图象与y=x有两个不同的交点,
可得:x=k+$\sqrt{x-1}$,必有两个不相等的实数根.
即:x-k=$\sqrt{x-1}$,
∵$\sqrt{x-1}≥0$,即x≥1,
∴1-k≥0,可得k≤1.
那么:(x-k)2=x-1有两个不相等的实数根.
其判别式△>0,即(2k+1)2-4k2-4>0,
解得:k$>\frac{3}{4}$,
∴实数k的取值范围是($\frac{3}{4}$,1].
故选D.

点评 本题考查了对定义的理解和转化思想,图象与y=x有两个不同的交点,即(x-k)2=x-1有两个不相等的实数根是关键.属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网