题目内容
函数f(x)=
的定义域为 .
| (x-1)-1 |
| log3(3x-2) |
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:根据函数成立的条件即可求出函数的定义域.
解答:
解:要使函数有意义,则
,
即
,得
,
即x>
且x≠1,
故函数的定义域为{x|x>
且x≠1},
故答案为:{x|x>
且x≠1}.
|
即
|
|
即x>
| 2 |
| 3 |
故函数的定义域为{x|x>
| 2 |
| 3 |
故答案为:{x|x>
| 2 |
| 3 |
点评:本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件,比较基础.
练习册系列答案
相关题目
给出下列命题:
①非零向量
,
满足|
|=|
|=|
-
|,则
与
的夹角为60°;
②若
•
>0,则
与
的夹角为锐角;
③△ABC中,有一点O满足
+
+
=0,则O为△ABC的重心;
④对非零向量
,
,若|
+
|=|
|-|
|,则存在实数λ,使得
=λ
成立.
以上命题正确的个数是( )
①非零向量
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
②若
| a |
| b |
| a |
| b |
③△ABC中,有一点O满足
| OA |
| OB |
| OC |
④对非零向量
| a |
| b |
| a |
| b |
| a |
| b |
| b |
| a |
以上命题正确的个数是( )
| A、4个 | B、3个 | C、2个 | D、1个 |
已知函数f(x)是定义在R上的偶函数,且f(-1+x)=f(-1-x),当0≤x≤1时,f(x)=1-x2,若直线y=-x+a与曲线y=f(x)恰有2个交点,则实数a的所有可能取值构成的集合为( )
A、{a|a=2k+
| ||||
B、{a|a=2k-
| ||||
C、{a|a=2k+1或2k+
| ||||
| D、{a|a=2k+1,k∈Z} |