题目内容

已知函数f(x)是定义在R上的偶函数,且f(-1+x)=f(-1-x),当0≤x≤1时,f(x)=1-x2,若直线y=-x+a与曲线y=f(x)恰有2个交点,则实数a的所有可能取值构成的集合为(  )
A、{a|a=2k+
3
4
或2k+
5
4
,k∈Z}
B、{a|a=2k-
1
4
或2k+
3
4
,k∈Z}
C、{a|a=2k+1或2k+
5
4
,k∈Z}
D、{a|a=2k+1,k∈Z}
考点:抽象函数及其应用
专题:函数的性质及应用
分析:由题意画出函数f(x)的图象,并在图中画出关键直线,再由条件转化为求出相切时的切点坐标,利用导数的几何意义,然后再把坐标代入切线方程求出a的值,
解答: 解:设-1≤x≤0时,则0≤-x≤1,∴f(-x)=1-(-x)2
∵函数f(x)是定义在R上的偶函数,
∴f(x)=1-x2
∴当-1≤x≤1时,f(x)=1-x2
∵f(-1+x)=f(-1-x),令x=x+1
∴f(x)=f(-1-x-1)=f(-x-2)=f(x+2)
∴f(x)为周期为2的周期函数,
由题意画出函数f(x)的图象,如图:
其中图中的直线l的方程为:y=-x+1,此时恰有两个交点,
由图得,当-1<x≤1时,直线l向上平移过程中与曲线y=f(x)恰有3个交点,
直到相切时,设切点为p(x,y),则f′(x)=-2x,
∴-1=-2x,解得x=
1
2
,即y=f(
1
2
)=1-
1
4
=
3
4

∴p(
1
2
3
4
),代入切线y=-x+a,解得a=
5
4

∵f(x)的定义域为R,周期为2,
∴所求的a的集合是:{a|a=2k+1或2k+
5
4
,k∈Z},
故选:C.
点评:本题考查了函数的性质以及图象的应用,导数的几何意义,考查了数形结合思想,关键正确作图.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网