题目内容

x∈[-
π
3
π
4
]
,求函数f(x)=
1
cos2x
+2tanx+1
的最小值及取得最小值时的x的值.
考点:同角三角函数间的基本关系,二次函数在闭区间上的最值
专题:三角函数的图像与性质
分析:f(x)利用同角三角函数间基本关系化简,再利用二次函数的性质变形,根据x的范围求出tanx的范围,利用二次函数的性质求出f(x)的最小值以及x的值即可.
解答: 解:f(x)=
1
cos2x
+2tanx+1=
sin2x+cos2x
cos2x
+2tanx+1=tan2x+2tanx+2=(tanx+1)2+1,
∵x∈[-
π
3
π
4
],
∴tanx∈[-
3
,1],
则tanx=-1,即x=-
π
4
时,
函数f(x)取得最小值1.
点评:此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网