题目内容
已知数列{an},满足an+1=
,a4=
,若bn=a2n-1-1(bn≠0).
(Ⅰ)求a1,并证明数列{bn}是等比数列;
(Ⅱ)令Cn=(2n-1)a2n-1,求数列{Cn}的前n项和Tn.
|
| 5 |
| 2 |
(Ⅰ)求a1,并证明数列{bn}是等比数列;
(Ⅱ)令Cn=(2n-1)a2n-1,求数列{Cn}的前n项和Tn.
考点:数列的求和,等比数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)由已知的数列递推式结合a4=
求得a1,然后由bn+1=a2n+1-1,bn=a2n-1-1得到
=
=
=
=
,从而得到数列{bn}是以
为公比的等比数列;
(Ⅱ)由(Ⅰ)求得bn=(
)n-1,得到a2n-1=(
)n-1+1,代入Cn=(2n-1)a2n-1,整理分组后利用等差数列的前n项和及错位相减法求得数列{Cn}的前n项和Tn.
| 5 |
| 2 |
| bn+1 |
| bn |
| a2n+1-1 |
| a2n-1-1 |
| ||
| a2n-1-1 |
| ||
| a2n-1-1 |
| 1 |
| 2 |
| 1 |
| 2 |
(Ⅱ)由(Ⅰ)求得bn=(
| 1 |
| 2 |
| 1 |
| 2 |
解答:
解:(Ⅰ)当n为奇数时,an+1=an+1,
∴a4=a3+1,则a3=a4-1=
-1=
.
当n为偶数时,an+1=
an,
∴a3=
a2,即a2=2a3=2×
=3.
a2=a1+1,∴a1=a2-1=3-1=2.
证明:bn+1=a2n+1-1,bn=a2n-1-1,
则
=
=
=
=
=
.
∴数列{bn}是以b1=a1-1=1为首项,以
为公比的等比数列;
(Ⅱ)由(Ⅰ),得bn=(
)n-1,
则a2n-1-1=bn=(
)n-1,∴a2n-1=(
)n-1+1.
Cn=(2n-1)a2n-1=(2n-1)[
+1]=(2n-1)+
.
∴Tn=[1+3+…+(2n-1)]+(
+
+…+
)=
+(
+
+…+
).
令Rn=
+
+…+
,
则
Rn=
+
+…+
,
两式作差得:
Rn=1+1+
+…+
-
=1+
-
=3-
-
.
∴Rn=6-
-
.
∴Tn=n2+6-
.
∴a4=a3+1,则a3=a4-1=
| 5 |
| 2 |
| 3 |
| 2 |
当n为偶数时,an+1=
| 1 |
| 2 |
∴a3=
| 1 |
| 2 |
| 3 |
| 2 |
a2=a1+1,∴a1=a2-1=3-1=2.
证明:bn+1=a2n+1-1,bn=a2n-1-1,
则
| bn+1 |
| bn |
| a2n+1-1 |
| a2n-1-1 |
| ||
| a2n-1-1 |
| ||
| a2n-1-1 |
=
| ||
| a2n-1-1 |
| 1 |
| 2 |
∴数列{bn}是以b1=a1-1=1为首项,以
| 1 |
| 2 |
(Ⅱ)由(Ⅰ),得bn=(
| 1 |
| 2 |
则a2n-1-1=bn=(
| 1 |
| 2 |
| 1 |
| 2 |
Cn=(2n-1)a2n-1=(2n-1)[
| 1 |
| 2n-1 |
| 2n-1 |
| 2n-1 |
∴Tn=[1+3+…+(2n-1)]+(
| 1 |
| 20 |
| 3 |
| 21 |
| 2n-1 |
| 2n-1 |
| (2n-1+1)n |
| 2 |
| 1 |
| 20 |
| 3 |
| 21 |
| 2n-1 |
| 2n-1 |
令Rn=
| 1 |
| 20 |
| 3 |
| 21 |
| 2n-1 |
| 2n-1 |
则
| 1 |
| 2 |
| 1 |
| 21 |
| 3 |
| 22 |
| 2n-1 |
| 2n |
两式作差得:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2n-2 |
| 2n-1 |
| 2n |
1-
| ||
1-
|
| 2n-1 |
| 2n |
| 1 |
| 2n-2 |
| 2n-1 |
| 2n |
∴Rn=6-
| 1 |
| 2n-3 |
| 2n-1 |
| 2n-1 |
∴Tn=n2+6-
| 2n+3 |
| 2n-1 |
点评:本题考查了等比关系的确定,考查了数列的分组求和,训练了错位相减法求数列的前n项和,解答此题的关键在于证明数列{bn}是等比数列,属有一定难度题目.
练习册系列答案
相关题目