ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf£¨x£©=kx+m£¬µ±x¡Ê[a1£¬b1]ʱ£¬f£¨x£©µÄÖµÓòΪ[a2£¬b2]£¬µ±x¡Ê[a2£¬b2]ʱ£¬f£¨x£©µÄÖµÓòΪ[a3£¬b3]£¬ÒÀ´ËÀàÍÆ£¬Ò»°ãµØ£¬µ±x¡Ê[an-1£¬bn-1]ʱ£¬f£¨x£©µÄÖµÓòΪ[an£¬bn]£¬ÆäÖÐk¡¢mΪ³£Êý£¬ÇÒa1=0£¬b1=1£®
£¨¢ñ£©Èôk=1£¬ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
£¨¢ò£©Èôk£¾0ÇÒk¡Ù1£¬ÎÊÊÇ·ñ´æÔÚ³£Êým£¬Ê¹ÊýÁÐ{bn}Êǹ«±È²»Îª1µÄµÈ±ÈÊýÁУ¿Çë˵Ã÷ÀíÓÉ£»
£¨¢ó£©»òk£¼0£¬ÉèÊýÁÐ{an}£¬{bn}µÄǰnÏîºÍ·Ö±ðΪSn£¬Tn£¬Çó£¨T1+T2+¡+T2012£©-£¨S1+S2+¡+S2012£©µÄÖµ£®
£¨¢ñ£©Èôk=1£¬ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
£¨¢ò£©Èôk£¾0ÇÒk¡Ù1£¬ÎÊÊÇ·ñ´æÔÚ³£Êým£¬Ê¹ÊýÁÐ{bn}Êǹ«±È²»Îª1µÄµÈ±ÈÊýÁУ¿Çë˵Ã÷ÀíÓÉ£»
£¨¢ó£©»òk£¼0£¬ÉèÊýÁÐ{an}£¬{bn}µÄǰnÏîºÍ·Ö±ðΪSn£¬Tn£¬Çó£¨T1+T2+¡+T2012£©-£¨S1+S2+¡+S2012£©µÄÖµ£®
¿¼µã£ºµÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄ×ÛºÏ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨¢ñ£©n=1ʱ£¬Á½¸öÊýÁоùΪ¹«²îΪmµÄµÈ²îÊýÁУ¬Ö±½ÓÓɵȲîÊýÁеÄͨÏʽµÃ´ð°¸£»
£¨¢ò£©ÓÉx¡Ê[an-1£¬bn-1]ʱ£¬f£¨x£©µÄÖµÓòΪ[an£¬bn]£¬µÃbn=kbn-1+m£¬Á½±ßͬʱ³ýÒÔbn-1£¬ÓÉÉÌΪ³£ÊýÇóµÃmµÄÖµ£»
£¨¢ó£©k£¼0£¬º¯Êýf£¨x£©=kx+mΪ¼õº¯Êý£¬ÓÉx¡Ê[an-1£¬bn-1]ʱ£¬f£¨x£©µÄÖµÓòΪ[an£¬bn]£¬µÃbn=kan-1+m£¬an=kbn-1+m£¬Á½Ê½×÷²îºó·Ök=-1ºÍk¡Ù-1·ÖÀàÇó½â£¨T1+T2+¡+T2012£©-£¨S1+S2+¡+S2012£©µÄÖµ£®
£¨¢ò£©ÓÉx¡Ê[an-1£¬bn-1]ʱ£¬f£¨x£©µÄÖµÓòΪ[an£¬bn]£¬µÃbn=kbn-1+m£¬Á½±ßͬʱ³ýÒÔbn-1£¬ÓÉÉÌΪ³£ÊýÇóµÃmµÄÖµ£»
£¨¢ó£©k£¼0£¬º¯Êýf£¨x£©=kx+mΪ¼õº¯Êý£¬ÓÉx¡Ê[an-1£¬bn-1]ʱ£¬f£¨x£©µÄÖµÓòΪ[an£¬bn]£¬µÃbn=kan-1+m£¬an=kbn-1+m£¬Á½Ê½×÷²îºó·Ök=-1ºÍk¡Ù-1·ÖÀàÇó½â£¨T1+T2+¡+T2012£©-£¨S1+S2+¡+S2012£©µÄÖµ£®
½â´ð£º
½â£º£¨¢ñ£©k=1ʱº¯Êý?£¨x£©=kx+mΪÔöº¯Êý£¬¡àan=an-1+m£¬bn=bn-1+m£¬
Ôòan-an-1=m£¬bn-bn-1=m£¬
ÊýÁÐ{an}£¬{bn}¾ùΪÒÔmΪ¹«²îµÄµÈ²îÊýÁУ®
¡àan=a1+£¨n-1£©m=£¨n-1£©m£¬bn=b1+£¨n-1£©m=£¨n-1£©m+1£»
£¨¢ò£©¡ßx¡Ê[an-1£¬bn-1]ʱ£¬f£¨x£©µÄÖµÓòΪ[an£¬bn]£¬¡àbn=kbn-1+m£¬
¡à
=k+
£¬ÒªÊ¹k+
Ϊ³£Êý£¬Ôò±ØÓÐm=0£¬
¹Êµ±m=0ʱ£¬{bn}Êǹ«±ÈΪkµÄµÈ±ÈÊýÁУ»
£¨¢ó£©bn=kan-1+m¢Ù
an=kbn-1+m¢Ú
¢Ù-¢ÚµÃbn-an=-k£¨bn-1-an-1£©
Èôk=-1£¬Ôòbn-an=bn-1-an-1=¡=b1-a1=1
¿ÉµÃTn-Sn=n
£¨T1+T2+¡+T2012£©-£¨S1+S2+¡+S2012£©=1+2+¡+2012=2025078£»
Èôk¡Ù-1£¬Ôòbn-an=£¨-k£©n-1
Tn-Sn=
=
-
£¬
¡à£¨T1+T2+¡+T2012£©-£¨S1+S2+¡+S2012£©
=
-(
+
+¡+
)
=
-
£®
Ôòan-an-1=m£¬bn-bn-1=m£¬
ÊýÁÐ{an}£¬{bn}¾ùΪÒÔmΪ¹«²îµÄµÈ²îÊýÁУ®
¡àan=a1+£¨n-1£©m=£¨n-1£©m£¬bn=b1+£¨n-1£©m=£¨n-1£©m+1£»
£¨¢ò£©¡ßx¡Ê[an-1£¬bn-1]ʱ£¬f£¨x£©µÄÖµÓòΪ[an£¬bn]£¬¡àbn=kbn-1+m£¬
¡à
| bn |
| bn-1 |
| m |
| bn-1 |
| m |
| bn-1 |
¹Êµ±m=0ʱ£¬{bn}Êǹ«±ÈΪkµÄµÈ±ÈÊýÁУ»
£¨¢ó£©bn=kan-1+m¢Ù
an=kbn-1+m¢Ú
¢Ù-¢ÚµÃbn-an=-k£¨bn-1-an-1£©
Èôk=-1£¬Ôòbn-an=bn-1-an-1=¡=b1-a1=1
¿ÉµÃTn-Sn=n
£¨T1+T2+¡+T2012£©-£¨S1+S2+¡+S2012£©=1+2+¡+2012=2025078£»
Èôk¡Ù-1£¬Ôòbn-an=£¨-k£©n-1
Tn-Sn=
| 1-(-k)n |
| 1+k |
| 1 |
| 1+k |
| (-k)n |
| 1+k |
¡à£¨T1+T2+¡+T2012£©-£¨S1+S2+¡+S2012£©
=
| 2012 |
| 1+k |
| -k |
| 1+k |
| (-k)2 |
| 1+k |
| (-k)2012 |
| 1+k |
=
| 2012 |
| 1+k |
| k2013-k |
| (1+k)2 |
µãÆÀ£º±¾Ì⿼²éÁ˵ȲîÊýÁк͵ȱÈÊýÁеÄ×ۺϣ¬¿¼²éÁËÊýÁеĺ¯ÊýÌØÐÔ£¬¿¼²éÁË·ÖÀàÌÖÂÛµÄÊýѧ˼Ïë·½·¨£¬ÑµÁ·Á˵ȱÈÊýÁеÄÇóºÍ·½·¨£¬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªº¯Êýf(x)=
µÄ¶¨ÒåÓòΪR£¬Ôò£¨¡¡¡¡£©
| cos(sinx) |
| A¡¢f£¨x£©ÊÇÆæº¯Êý |
| B¡¢f£¨x£©ÊÇżº¯Êý |
| C¡¢f£¨x£©¼´ÊÇÆæº¯ÊýÓÖÊÇżº¯Êý |
| D¡¢f£¨x£©¼´²»ÊÇÆæº¯ÊýÓÖ²»ÊÇżº¯Êý |
ÒÑÖªÆæº¯Êýf£¨x£©ÔÚÇø¼ä[-2£¬2]Éϵ¥µ÷µÝ¼õ£¬Ôò²»µÈʽf£¨x2£©+f£¨2x£©£¾0µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
| A¡¢[-1£¬0£© |
| B¡¢£¨-2£¬0£© |
| C¡¢£¨-2£¬-1] |
| D¡¢£¨-¡Þ£¬-2£©¡È£¨0£¬+¡Þ£© |
Á½Ô²C1£ºx2+y2+2x=0£¬C2£ºx2+y2+4y+3=0µÄλÖùØÏµÎª£¨¡¡¡¡£©
| A¡¢ÍâÀë | B¡¢ÄÚº¬ | C¡¢Ïཻ | D¡¢ÏàÇÐ |