题目内容
| a |
| b |
| a |
| b |
| A、2 | B、1 | C、0 | D、-2 |
考点:平面向量数量积的运算
专题:平面向量及应用
分析:直接利用向量的坐标运算,数量积的求法求解即可.
解答:
解:
=(1,3),
=(-1,1),
则
•
=1×(-1)+3×1=2.
故选:A.
| a |
| b |
则
| a |
| b |
故选:A.
点评:本题考查向量的数量积的求法,基本知识的考查.
练习册系列答案
相关题目
已知定义在R上的函数f(x)满足下列三个条件:
①对任意的x∈R,都有f(x+4)=f(x);
②对任意的0≤x1<x2≤2,都有f(x1)<f(x2);
③y=f(x+2)的图象关于y轴对称,
则下列结论中,正确的是( )
①对任意的x∈R,都有f(x+4)=f(x);
②对任意的0≤x1<x2≤2,都有f(x1)<f(x2);
③y=f(x+2)的图象关于y轴对称,
则下列结论中,正确的是( )
| A、f(7)<f(4.5)<f(6.5) |
| B、f(7)<f(6.5)<f(4.5) |
| C、f(4.5)<f(6.5)<f(7) |
| D、f(4.5)<f(7)<f(6.5) |
不等式x2-3x+2<0的解集是( )
| A、{x|x<-2或x>-1} |
| B、{x|x<1或x>2} |
| C、{x|1<x<2} |
| D、{x|-2<x-1} |
数列{
}的前n项和为Sn,且满足a1=1,an=an-1+n,(n≥2),则Sn等于( )
| an |
| n |
A、
| ||
B、
| ||
C、
| ||
D、
|
定义在R上的偶函数,f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有(x1-x2)[f(x2)-f(x1)]>0,则当n∈N*时,有( )
| A、f(-n)<f(n-1)<f(n+1) |
| B、f(n-1)<f(-n)<f(n+1) |
| C、f(n+1)<f(-n)<f(n-1) |
| D、f(n+1)<f(n-1)<f(-n) |
设全集为R,函数f(x)=
的定义域为M,函数f(x)=ln(x2-4x)的定义域为N,则M∩N=( )
| 4-x2 |
| A、[-2,0) |
| B、(-∞,-2] |
| C、(4,+∞) |
| D、(-∞,0]∪(4,+∞) |